
DOCS CONTACT SALES

Processor

Choose a Page

PDF Editing and Document Operations API

for Linux

PSPDFKit Processor has been deprecated and replaced by . To migrate to

Document Engine and unlock advanced document processing capabilities, refer to our

. Learn more about these enhancements on our .

The POST /process API has been deprecated, and it may be removed in a future version of

PSPDFKit. To perform document operations on a PDF, please use the instead.

To process a document, submit a multipart/form-data request to the POST /process API endpoint.

Available headers for POST /process are outlined below.

PROCESSOR GUIDES

Document Engine

migration

guide blog

build API

Processing a Document

Optional: Authorization — The (JWT).JSON Web Token

Optional: pspdfkit-pdf-password — The password required for the PDF document to be

processed.

Optional: X-Request-Id — If this is set, the log statements associated with the HTTP request are

marked with a request_id label. Logs correlated with the same request have the same request

ID. This helps you determine which request triggered a specific response and what errors or

ASK AI

SDK Low-Code Workflow DWS API

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/processor/
https://www.nutrient.io/guides/processor/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/guides/processor/api/build-api-reference
https://www.nutrient.io/guides/processor/api/authentication/
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Available parameters for POST /process are outlined below.

warnings were emitted during the request processing. The request ID needs to be between 20

and 200 characters long.

"file" , "url" , or "generation" :

"file" — The document be processed.

"url" — The URL of the document to be processed.

"generation" — A JSON object describing how the document should be generated. See

the guide for more information.PDF Generation schema

Optional: "operations" — The JSON object describing the operations to be performed on the

supplied document. For all available operations, see the guide.available operations

Optional: Attachment data for the operations — For example, the XFDF to be imported when

using the applyXfdf document operation.

Request

POST /process
Content-Type: multipart/form-data; boundary=customboundary
Authorization: Token token="JWT Token"
pspdfkit-pdf-password: "PDF Password"

--customboundary
Content-Disposition: form-data; name="file"; filename="Example Document.pdf"
Content-Type: application/pdf

<Document data>
--customboundary
Content-Disposition: form-data; name="operations"
Content-Type: application/json

<Operations JSON>
--customboundary--

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

curl -H "Authorization: Token token=JWT_TOKEN" \
 -F file=@Example.pdf \
 -F operations="{\"operations\":[{\"type\": \"flattenAnnotations\"}]}" \
 http://localhost:5000/process \
 --output result.pdf

1
2
3
4
5

https://www.nutrient.io/guides/processor/pdf-generation/pdf-generation-schema/
https://www.nutrient.io/guides/processor/api/available-operations/

The following operations can be used in the POST /process API to modify documents:

Response

HTTP/1.1 200 OK
Content-Type: application/pdf

<PDF data>

1
2
3
4

Available Operations

type Rotation = 0 | 90 | 180 | 270;

type AddPageConfiguration = {
 backgroundColor: string, // #RRGGBB or rgb(number, number, number).
 pageWidth: number,
 pageHeight: number,
 rotateBy: Rotation,
 insets?: [number, number, number, number]
};

type Annotation = ...; // See watermark documentation for more information.

type Range = [min, max]; // 'min' and 'max' are inclusive.
type ImportPageIndex = Array<number | Range>;

type DocumentOperation =
 | {| type: "addPage", afterPageIndex: number, ...AddPageConfiguration |}
 | {| type: "addPage", beforePageIndex: number, ...AddPageConfiguration |}
 | {| type: "duplicatePages", pageIndexes: Array |}
 | {| type: "movePages", pageIndexes: Array, afterPageIndex: number |}
 | {| type: "movePages", pageIndexes: Array, beforePageIndex: number |}
 | {| type: "rotatePages", pageIndexes: Array, rotateBy: Rotation |}
 | {| type: "keepPages", pageIndexes: Array |}
 | {| type: "removePages", pageIndexes: Array |}
 | {| type: "setPageLabel", pageIndexes: Array, pageLabel: string |}
 | {|
 type: "importDocument",
 afterPageIndex: number,
 importedPageIndexes?: ImportPageIndex,
 treatImportedDocumentAsOnePage: boolean,
 document: string
 |}
 | {|
 type: "importDocument",

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

 beforePageIndex: number,
 importedPageIndexes?: ImportPageIndex,
 treatImportedDocumentAsOnePage: boolean,
 document: string
 |}
 | {|
 type: "applyXfdf",
 dataFilePath: string
 |}
 | {|
 type: "applyInstantJson",
 dataFilePath: string
 |}
 | {|
 type: "performOcr",
 pageIndexes: Array,
 language: string
 |}
 | {|
 type: "flattenAnnotations",
 annotationIds?: Array,
 pageIndexes?: Array,
 noteAnnotationBackgroundColor?: string, // #RRGGBB
 noteAnnotationOpacity?: number // 0.0 - 1.0
 |}
 | {|
 type: "updateMetadata",
 metadata: {
 title?: string,
 author?: string,
 |}
 | {|
 type: "watermark",
 pageIndexes: Array,
 annotation: Annotation
 |}
 | {|
 type: "createRedactions",
 strategy: "regex" | "preset" | "text",
 strategyOptions: object,
 content: ?{
 fillColor: ?string, // default is "#000000"
 overlayText: ?string, // default is null
 repeatOverlayText: ?boolean, // default is false
 color: ?string, // default is "#F82400"
 outlineColor: ?string, // default is "#F82400"
 creatorName: ?string, // default is null
 customData: ?object
 |}
 | {|
 type: "applyRedactions"
 |};

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

The addPage operation allows you to add a single empty page to the document.

The duplicatePages operation will duplicate all pages at the given page indices. The duplicated page

will be placed directly after the original page.

The movePages operation moves the page at the specified page index to a place before or after the

specified page index.

The rotatePages operation will rotate the specified pages the desired amount. If the page is already

rotated, this will add the specified rotation, so if a page is already rotated 90 degrees and you apply a

90-degreee rotation, it’ll result in the page being rotated 180 degrees.

The keepPages operation will remove all pages except the ones specified to be kept. So if you specify

[0] , only the first page of the document will be kept, and all others will be removed.

The removePages operation will remove all specified pages.

The setPageLabel operation will set the label for all specified pages. This label is, for example, shown

in PSPDFKit for Android and PSPDFKit for iOS when scrolling pages.

addPage

duplicatePages

movePages

rotatePages

keepPages

removePages

setPageLabel

importDocument

The importDocument operation allows you to add an existing PDF into your document. It’ll be added

either before or after the specified page index, depending on if afterPageIndex or beforePageIndex is

used. Using the treatImportedDocumentAsOnePage option, you can make sure that as far as all follow-up

operations are concerned, the imported document is only treated as a single page that makes

specifying indices easier.

importedPageIndexes may be used to import specific pages or a range of pages. If this parameter is left

blank, the entire document will be imported.

The applyXfdf operation allows you to apply an existing XFDF file to the document. This will import all

annotations found in the XFDF file and add them to the document.

The applyInstantJson operation allows you to apply an existing file to the document.

This will import all annotations and fill the form fields with the values found in the Instant JSON.

The performOcr operation allows you to on your document.

For a list of all languages supported by the performOcr operation, see .

The flattenAnnotations operation will flatten all annotations and form fields in the document,

meaning they can no longer be modified. The note annotation options are used to specify how flattened

note annotations are rendered. Currently, you can change the background color and the opacity. The

background color is only used if the note annotation doesn’t have a color set. To flatten a subset of

annotations, you can specify the annotation IDs (these can be annotation IDs you get from the GET

/annotations request, or they can be pdfObjectId s of the annotations) or page indexes.

The updateMetadata operation allows you to change the title and author metadata stored in a PDF.

applyXfdf

applyInstantJson

Instant JSON

performOcr

run OCR

here

flattenAnnotations

updateMetadata

https://www.nutrient.io/guides/processor/json/
https://www.nutrient.io/guides/processor/ocr/overview/
https://www.nutrient.io/guides/processor/ocr/language-support

The watermark operation allows you to add a specified annotation to all specified pages.

annotation is an Instant JSON annotation, as described .

Example Operations Object:

This adds a simple free text annotation on all pages.

The createRedactions operation allows you to batch create redaction annotation based on specified

search criteria:

watermark

here

{
"operations": [
{

"type": "watermark",
"pageIndexes": "all",
"annotation": {
"horizontalAlign": "left",
"bbox": [
510.794701986755,
145.13907284768214,
101.03311258278146,
20.344370860927157

],
"font": "Helvetica",
"rotation": 0,
"pageIndex": 0,
"updatedAt": "2019-07-09T06:55:33.426Z",
"verticalAlign": "top",
"type": "pspdfkit/text",
"opacity": 0.5,
"text": "Text annotation",
"fontColor": "#000000",
"fontSize": 72,
"isFitting": true,
"createdAt": "2019-07-09T06:55:24.320Z",
"v": 1,
"name": "1a287131-0473-402e-8094-097cb49083e2"

}
}

]
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

createRedactions

https://www.nutrient.io/guides/document-engine/json/

Usage of this feature requires you to license the “Redaction” component.

The preset strategy creates redaction annotations on top of both text and annotations, which match

one of the predefined patterns:

includeAnnotations determines whether redactions should also be created on top of annotations that

include the matching text.

Note that the provided presets are designed in such a way that they might find matches across different

types of data. When you’re not sure about the results, review the redaction annotations visually before

applying them.

A created redaction annotation covers the matching text exactly, or in case of annotations, the whole

annotation’s bounding box.

strategy determines how PSPDFKit Processor finds the places to redact, and the shape of

strategyOptions .

content is optional and allows you to override the default values we use for the created

redaction annotations.

preset Strategy

{
 type: "createRedactions",
 strategy: "preset",
 strategyOptions: {
 preset: "credit-card-number"
 | "date"
 | "email-address"
 | "international-phone-number"
 | "ipv4"
 | "ipv6"
 | "mac-address"
 | "north-american-phone-number"
 | "social-security-number"
 | "time"
 | "url"
 | "us-zip-code"
 | "vin",
 includeAnnotations: ?boolean // default is true
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

The regex strategy creates redaction annotations on top of text and annotations, which match the

provided regular expressions:

includeAnnotations determines whether redactions should also be created on top of annotations that

include the matching text.

The regular expression follows the ICU standard, which is described in detail . To escape regex

control characters (e.g. “.” or “?”), you need to put a double backslash (”\”) in front of them. By default, the

regular expression is case sensitive, but you can change that by setting the caseSensitive parameter

to false .

If the regular expression is invalid, no redaction annotations are created.

A created redaction annotation covers the matching text exactly, or in case of annotations, the entire

annotation’s bounding box.

The text strategy creates redaction annotations on top of text and annotations, which match a literal

search pattern:

regex Strategy

{
 type: "createRedactions",
 strategy: "regex",
 strategyOptions: {
 regex: string,
 includeAnnotations: ?boolean, // default is true
 caseSensitive: ?boolean
 }
}

1
2
3
4
5
6
7
8
9

here

text Strategy

{
 type: "createRedactions",
 strategy: "text",
 strategyOptions: {
 text: string,
 includeAnnotations: ?boolean, // default is true
 caseSensitive: ?boolean
 }
}

1
2
3
4
5
6
7
8
9

https://unicode-org.github.io/icu/userguide/strings/regexp.html

The text property inside strategyOptions is a search query. includeAnnotations determines

whether redactions should also be created on top of annotations that include the matching text.

Note that, by default, the search query is case insensitive, but you can change this by setting

caseSensitive to true .

A created redaction annotation covers the matching text exactly, or in case of annotations, the entire

annotation’s bounding box.

The applyRedactions operation will apply all redaction annotations that exist in the document. It is

always ran as the last step no matter where it is placed in the list of operations. After redactions are

applied the redaction annotations are removed from the document and in their place only the content

as configured in the redaction annotation will be left, all other content will be permanently removed.

Usage of this feature requires you to license the “Redaction” component.

Was this helpful?

Questions?

applyRedactions

YES NO

Contact us

https://www.nutrient.io/company/contact/

