
DOCS CONTACT SALES

Processor

Get Started

Getting started with Processor

GETTING STARTED PROCESSOR

GOLANG

PSPDFKit Processor has been deprecated and replaced by . To migrate to

Document Engine and unlock advanced document processing capabilities, refer to our

. Learn more about these enhancements on our .

This guide walks you through the steps necessary to start PSPDFKit Processor. It also shows you

how to use it to process documents. By the end, you’ll be able to merge two PDF documents into

one using Processor’s HTTP API with Golang.

PSPDFKit Processor runs on a variety of platforms. The following operating systems are

supported:

Document Engine

migration guide blog

Requirements

macOS Ventura, Monterey, Mojave, Catalina, or Big Sur

Windows 10 Pro, Home, Education, or Enterprise 64-bit
ASK AI

SDK Low-Code Workflow DWS API

7/24/25, 4:42 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=golang 1/7

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/try/
https://www.nutrient.io/getting-started/processor/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Regardless of your operating system, you’ll need at least 4 GB of RAM.

PSPDFKit Processor is distributed as a Docker container. To run it on your computer, you need to

install a Docker runtime distribution for your operating system.

MACOS WINDOWS LINUX

Install and start Docker Desktop for Mac. Refer to for instructions.

First, open your terminal emulator.

MACOS WINDOWS LINUX

Use the terminal emulator integrated with your code editor or IDE. Alternatively, you can use

Terminal.app or .

Now run the following command:

This command might take a while to run, depending on your internet connection speed. Wait until

you see a message like this in the terminal:

Ubuntu, Fedora, Debian, or CentOS. Ubuntu and Debian derivatives such as Kubuntu or

Xubuntu are supported as well. Currently only 64-bit Intel (x86_64) processors are

supported.

1 Installing Docker

the Docker website

2 Starting PSPDFKit Processor

iTerm2

docker run --rm -t -p 5000:5000 pspdfkit/processor:2023.11.1

7/24/25, 4:42 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=golang 2/7

https://docs.docker.com/docker-for-mac/install/
https://iterm2.com/

The PSPDFKit Processor is now up and running!

The interaction with PSPDFKit Processor happens via its HTTP API. Documents and commands

are sent in API request calls, and the resulting files are received in API response calls. API calls are

invoked from the Go package, so you need to install Golang.

To install Golang:

[info] 2023-02-05 18:56:45.286 Running PSPDFKit Processor version 2023.11.1

3 Installing Golang

Follow the instructions for your operating system on Golang’s

.

1 Download and Installation

Page

Go to any directory in your system using your terminal. Create a new directory called

merging-pdfs and go to the newly created directory:

2

mkdir merging-pdfs
cd merging-pdfs

1
2

Create a new go module by running the command below from the merging-pdfs

directory. Replace YOUR-GITHUB-USERNAME with your actual GitHub username:

3

go mod init github.com/YOUR-GITHUB-USERNAME/merging-pdfs

Create a new file in the directory called merge.go and add the following content:4

package main

import "fmt"

func main() {

1
2
3
4
5
6
7

7/24/25, 4:42 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=golang 3/7

https://go.dev/doc/install
https://go.dev/doc/install

If you don’t have any sample documents, download and use these files: and

Replace the contents of the merge.go file with the code below. Replace /path/to/cover.pdf in

lines 37 and 46, and replace /path/to/document.pdf in lines 59 and 68 with the actual paths to the

example documents on your machine:

 fmt.Println("Hello World")

Run the file from your terminal with go run merge.go to make sure everything is working

properly.

5

4 Merging PDFs with Golang

cover.pdf

document.pdf

package main

import (
"bytes"
"fmt"
"io"
"log"
"mime/multipart"
"net/http"
"os"
"path/filepath"

)

func main() {
instructions := `

{
"parts": [

{
"file": "cover"

},
{

"file": "document"
}

]
}

`

payload := &bytes.Buffer{}
writer := multipart.NewWriter(payload)

err := writer.WriteField("instructions", instructions)
if err != nil {

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

7/24/25, 4:42 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=golang 4/7

https://www.nutrient.io/getting-started/server/processor/files/cover.pdf
https://www.nutrient.io/getting-started/server/processor/files/document.pdf

log.Fatalln(err)
}

// Replace "/path/to/cover.pdf".
cover, err := os.Open("/path/to/cover.pdf")
defer cover.Close()

if err != nil {
log.Fatalln(err)
return

}

// Replace "/path/to/cover.pdf".
coverPart, err := writer.CreateFormFile("cover", filepath.Base("/pat
if err != nil {

log.Fatalln(err)
return

}

_, err = io.Copy(coverPart, cover)
if err != nil {

log.Fatalln(err)
return

}

// Replace "/path/to/document.pdf".
document, err := os.Open("/path/to/document.pdf")
defer document.Close()

if err != nil {
log.Fatalln(err)
return

}

// Replace "/path/to/document.pdf".
documentPart, err := writer.CreateFormFile("document", filepath.Base
if err != nil {

log.Fatalln(err)
return

}

_, err = io.Copy(documentPart, document)
if err != nil {

log.Fatalln(err)
return

}

err = writer.Close()
if err != nil {

fmt.Println(err)
return

}

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

7/24/25, 4:42 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=golang 5/7

To run the code, ensure you’re in the merging-pdfs directory and type the following command in

your terminal:

Most of this code, up until the client.Do(req) statement, constructs a that’s

sent to Processor. It includes two files — in this case, cover and document — and a list of

instructions for PSPDFKit Processor.

By default, PSPDFKit Processor’s output (the /build endpoint) is the result of merging all input

documents or parts of the instructions.

To learn more about the /build instructions, go to the article.

The result of this code is a merged result.pdf file in the merging-pdfs directory.

processorUrl := "http://localhost:5000/build"
method := "POST"

client := &http.Client{}
req, err := http.NewRequest(method, processorUrl, payload)

if err != nil {
fmt.Println(err)
return

}
req.Header.Set("Content-Type", writer.FormDataContentType())
res, err := client.Do(req)
if err != nil {

fmt.Println(err)
return

}
defer res.Body.Close()

output, err := os.Create("result.pdf")

log.Print(res)
output.ReadFrom(res.Body)

if err != nil {
fmt.Println(err)
return

}
}

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113

go run merge.go

multipart request

Processor API Reference

7/24/25, 4:42 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=golang 6/7

https://www.nutrient.io/blog/a-brief-tour-of-multipart-requests/
https://www.nutrient.io/guides/processor/api/build-api-reference/

Was this helpful?

Questions?

YES NO

Contact us

7/24/25, 4:42 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=golang 7/7

https://www.nutrient.io/company/contact/

