
DOCS CONTACT SALES

Processor

PDF Generation

Create PDFs from Scratch in Linux

PSPDFKit Processor has been deprecated and replaced by . To migrate to

Document Engine and unlock advanced document processing capabilities, refer to our

. Learn more about these enhancements on our .

This guide will take you through the process of designing a PDF using the PDF Generation feature.

Before you get started, make sure .

You can download and use either of the following sample documents for the examples in this guide:

You’ll be sending with to Processor’s /build endpoint. To learn

more about multipart requests, refer to our blog post on the topic, .

Check out the to learn more about the /build endpoint and all the actions you can

perform on PDFs with PSPDFKit Processor.

The PDF Generation component leverages HTML’s prominence and wide-reaching support to describe

the content and layout of a desired PDF. To produce your first PDF, it’s as simple as passing a basic

PROCESSOR GUIDES PDF GENERATION

Document Engine

migration

guide blog

Processor is up and running

Example eight-page PDF

Example four-page PDF

multipart POST requests instructions

A Brief Tour of Multipart Requests

API Reference

Document content

ASK AI

SDK Low-Code Workflow DWS API

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/processor/
https://www.nutrient.io/guides/processor/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/getting-started/processor/
https://www.nutrient.io/guides/processor/files/8-page-example-document.pdf
https://www.nutrient.io/guides/processor/files/4-page-example-document.pdf
https://www.baeldung.com/postman-form-data-raw-x-www-form-urlencoded
https://www.nutrient.io/guides/processor/api/build-api-reference/#api-specification
https://www.nutrient.io/blog/a-brief-tour-of-multipart-requests/
https://www.nutrient.io/guides/processor/api/build-api-reference/#api-specification
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

HTML document, as shown in the following letter example. The letter holds an address, subject, main

body, and sign off, all in separate div blocks:

Next, send the HTML file from above to Processor for generation. This is done by sending a multipart

request to the /build endpoint. Attach the instructions JSON, along with the HTML file from above:

After performing the above curl command, you’ll receive a PDF that looks like the following.

<!DOCTYPE html>
<html>
 <body>
 <div>
 John Smith

 123 Smith Street

 90568 TA

 29 February 2020
 </div>
 <div>Subject: PDF Generation FTW!</div>
 <div>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit, ...
 </p>
 </div>
 <div>John Smith Jr.
</div>
 </body>
</html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

curl -X POST http://localhost:5000/api/build \
 -F page.html=@/path/to/page.html \
 -F style.css=@/path/to/style.css \
 -F my-image.jpg=@/path/to/my-image.jpg \
 -F instructions='{
 "parts": [
 {
 "html": "page.html",
 "assets": [
 "style.css",
 "my-image.jpg"
]
 }
]
}' \
 -o result.pdf

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

SHELL HTTP

https://www.nutrient.io/guides/processor/api/build-api-reference/
https://www.nutrient.io/guides/processor/api/build-api-reference/#api-specification

To help design your PDF, preview your HTML in Chrome or another Chromium-based browser. Minor

differences, outlined in the [HTML layout and CSS considerations][html-css-considerations] guide, are

to be expected. To further enhance the design experience, you can use the Chrome DevTools to

.

Now that you have the content you want, the next step is to improve the layout.

From the last example, you can see the text was pushing up to the side of the page, and the page size

was A4. With the PDF Generation feature, the page size and margins are adjustable. To change them,

include the extra information in the :

resize

your viewport to match your desired page size

Document layout

PDF Generation schema

https://developers.google.com/web/tools/chrome-devtools/device-mode
https://developers.google.com/web/tools/chrome-devtools/device-mode
https://www.nutrient.io/guides/processor/pdf-generation/pdf-generation-schema/

The size of the page has been reduced to A6, and all the edges have a margin of 10 mm.

curl -X POST http://localhost:5000/api/build \
 -F page.html=@/path/to/page.html \
 -F instructions='{
 "parts": [
 {
 "html": "page.html",
 "layout": {
 "size": "a6",
 "margin": {
 "top": 10,
 "left": 10,
 "bottom": 10,
 "right": 10
 }
 }
 }
]
}' \

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

SHELL HTTP

To style various aspects of the documents, it’s possible to use CSS, much like you would on the web.

CSS is well supported and expressive, which helps you achieve any look you desire.

Continuing with the letter example, move the address over to the right-hand side of the page, and style

the subject line to make it more prominent:

Document styling

<!DOCTYPE html>
<head>
 <style type="text/css">
 .address {
 text-align: left;
 float: right;
 margin-bottom: 20px;

1
2
3
4
5
6
7

Send the same multipart request to Processor with the new HTML file. The result is a PDF document

with certain elements styled as described in the following CSS file:

 }
 .subject {
 clear: both;
 font-weight: bold;
 }
 </style>
</head>
<html>
 <body>
 <div class="address">
 John Smith

 123 Smith Street

 90568 TA

 29 February 2020
 </div>
 <div class="subject">Subject: PDF Generation FTW!</div>
 <div>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit, ...
 </p>
 </div>
 <div>John Smith Jr.
</div>
 </body>
</html>

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

curl -X POST http://localhost:5000/api/build \
 -F page.html=@/path/to/page.html \
 -F instructions='{
 "parts": [
 {
 "html": "page.html",
 "layout": {
 "size": "a6",
 "margin": {
 "top": 10,
 "left": 10,
 "bottom": 10,
 "right": 10
 }
 }
 }
]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

SHELL HTTP

Rather than using the default font, it may be desirable to use a custom font to enhance the look of your

final document.

You can do so by providing a font file in the and specifying the font in your HTML.

In the following example, you can use an Open Sans font, which you can retrieve from the

.

First, adjust the HTML to both use the font file and specify the font family. Note that the src of the font

file is referenced with no subdirectories, as though the file were residing next to the HTML. This is

because PDF Generation only supports a flat-like directory structure:

' \

Font selection

generation schema

Google Fonts

repository

<!DOCTYPE html>
<head>
 <style type="text/css">
 @font-face {
 font-family: "Open Sans";
 src: url("OpenSans-Regular.ttf") format("truetype");
 }
 body {
 font-family: "Open Sans", sans-serif;
 }
 .address {
 text-align: left;
 float: right;
 margin-bottom: 20px;
 }
 .subject {
 clear: both;
 font-weight: bold;
 }
 </style>
</head>
<html>
 <body>
 <div class="address">
 John Smith

 123 Smith Street

 90568 TA

 29 February 2020
 </div>
 <div class="subject">Subject: PDF Generation FTW!</div>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

https://www.nutrient.io/guides/processor/pdf-generation/pdf-generation-schema/
https://fonts.google.com/specimen/Open+Sans
https://fonts.google.com/specimen/Open+Sans

Send the multipart request to Processor. Be sure that the extra OpenSans-Regular.tff asset is

referenced in the HTML. The example below shows how the multipart request is formed.

The font file, OpenSans-Regular.ttf , doesn’t reside in a subdirectory, and its name in the multipart

request is the same name that’s referenced in the HTML file.

result.pdf will now have the font applied to the whole document and will render like the following.

 <div>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit, ...
 </p>
 </div>
 <div>John Smith Jr.
</div>
 </body>
</html>

32
33
34
35
36
37
38
39

curl -X POST http://localhost:5000/api/build \
 -F page.html=@/path/to/page.html \
 -F OpenSans-Regular.ttf=@/path/to/OpenSans-Regular.tff \
 -F instructions='{
 "parts": [
 {
 "html": "page.html",
 "layout": {
 "size": "a6",
 "margin": {
 "top": 10,
 "left": 10,
 "bottom": 10,
 "right": 10
 },
 "assets": [
 "OpenSans-Regular.ttf"
]
 }
 }
]
}' \
 -o result.pdf

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

SHELL HTTP

You’ve walked through each step of defining, aligning, and styling, and now you should have the skills to

design a wide range of unique PDFs. For an enhanced design experience, we suggest using a

Chromium-based browser, which will speed up the development process.

After refining your skills, you may realize you have the need to inject elements and values into the HTML

prior to sending the document for generation. In the following guides, we demonstrate how to inject

data into an HTML template to produce highly customized PDFs — such as invoices with multiple line

items, order forms with unique products, or runtime-generated graphs — so as to provide additional

context for your customers.

Choose your language-specific Variable Data guide to learn how to inject elements and values at

runtime:

Was this helpful?

Questions?

Next steps

JavaScript

Python

Java

C# (.NET)

PHP

YES NO

Contact us

https://www.nutrient.io/guides/processor/pdf-generation/variable-data-javascript
https://www.nutrient.io/guides/processor/pdf-generation/variable-data-python
https://www.nutrient.io/guides/processor/pdf-generation/variable-data-java
https://www.nutrient.io/guides/processor/pdf-generation/variable-data-csharp-dotnet
https://www.nutrient.io/guides/processor/pdf-generation/variable-data-php
https://www.nutrient.io/company/contact/

