
DOCS CONTACT SALES

Processor

Choose a Page

Authentication API

PSPDFKit Processor has been deprecated and replaced by . To migrate to

Document Engine and unlock advanced document processing capabilities, refer to our

. Learn more about these enhancements on our .

PSPDFKit Processor offers multiple authentication strategies; which one you use depends on the

requirements of your application. This document will walk you through all of them and discuss their

advantages and disadvantages.

By default, PSPDFKit Processor starts with no authentication method enabled. This means that to use

the POST /build endpoint, no authentication header is necessary, and all valid requests are

processed.

This authentication is ideal when you’re just getting started working with Processor, or if you plan to only

use it locally on your machine.

Advantages:

Disadvantages:

PROCESSOR GUIDES

Document Engine

migration

guide blog

No Authentication

Requires no additional setup on the server side.

Can send requests with no special authentication headers on the client side.

ASK AI

SDK Low-Code Workflow DWS API

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/processor/
https://www.nutrient.io/guides/processor/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

To use the API token-based authentication, you need to set the API_AUTH_TOKEN environment variable

to the token you want to use. That could look like this in your docker-compose.yml file:

Any request sent to your PSPDFKit Processor instance will now require an Authorization: Token token=

<api_auth_token> header. Any request that doesn’t include an authorization header or includes the

wrong token will be rejected. An example curl request could look like this:

This authentication method is a great choice when your backend systems are interacting with

Processor directly or the Processor endpoint isn’t exposed to the internet.

No authentication means you can’t control which operations are performed or restrict access to

certain users.

API Token Authentication

version: "3.7"

services:
 processor:
 image: "pspdfkit/processor:2023.11.1"
 environment:
 API_AUTH_TOKEN: secret

1
2
3
4
5
6
7

curl -X POST http://localhost:5000/build \
 -H "Authorization: Token token=secret" \
 -o result.pdf \
 --fail \
 -F document=@document.pdf \
 -F logo=@logo.png \
 -F instructions='{
 "parts": [
 {
 "file": "document"
 }
],
 "actions": [
 {
 "type": "watermark",
 "image": "logo",
 "width": "25%"
 }
]
 }'

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Advantages:

Disadvantages:

PSPDFKit Processor also supports the standard for authentication. Your backend signs a JWT

asserting that the holder of the token is allowed to process certain documents using certain operations.

Next, it passes the JWT to your client apps. Your app then passes its token to the PSPDFKit Processor

HTTP API to prove it’s allowed to process the document.

This authentication method is best for user-facing applications where you want to control who

accesses Processor and what operations they perform.

Advantages:

Compared to using JSON Web Token (JWT) authentication, the setup is relatively easy, with only

a single secret needing to be shared between the server and client applications.

While the API token allows you to control who accesses PSPDFKit Processor, it doesn’t give you

control over which operations are performed.

JSON Web Token (JWT) Authentication

JWT

https://jwt.io/

Disadvantages:

You can generate a token with one of the many open source libraries that are available and listed on

.

We provide two optional claims that give you control over which documents can be processed and

which operations can be applied to the document. You can use this to ensure the JWTs you create are

only used on certain documents, with certain attachments, and to apply certain operations.

JWT authentication gives you the most flexibility with granting permissions, as it allows you to

both control who accesses Processor and decide what operations they’re allowed to run.

If you use JWT authentication, you can use the mobile Office conversion endpoint in your

Android and iOS apps that also use the PSPDFKit SDK.

For the JWT authentication to work, you need an additional server component that has access to

your private key and that can generate JWTs on behalf of your clients, making the initial setup

more complicated.

Your clients need to make two requests for processing documents — one to obtain a JWT, and

one to actually process the document.

Generating JWTs

jwt.io

Requirements

The JWT has to include the standard claim "exp" , which sets the deadline for the validity of the

token. This needs to be a non-negative number using the

.

Unix “Seconds Since the Epoch”

timestamp format

The JWT has to be signed using an asymmetric cryptographic algorithm. PSPDFKit Processor

supports the algorithms RS256, RS512, ES256, and ES512. See for details about

specific algorithms.

RFC 7518

Optional Claims

"allowed_files" — This controls which documents the operations may be applied to. You can

use this if you want the JWT to only be used to process a specific set of documents, or to limit

which attachments can be used. There are multiple options you can use.

"any" or not specified at all — There’s no limitation on the documents that can be

processed, meaning this token works on all documents and with all attachments.

https://jwt.io/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15
https://www.ietf.org/rfc/rfc7518.html#section-3

The following example shows the creation of a JWT in a Node/Express app using the

. It assumes you chose the RS256 algorithm and have created a pair of private and public keys.

To create a key, use openssl:

A JSON object containing the following:

Required — file — One of:

"any" — Any file can be processed.

A list of SHA-256 hashes of the documents that can be processed.

Required — url — One of:

"any" — Any URL can be processed.

A list of URLs documents can be processed from.

Required for every attachment — An object with the same name as the attachment

containing one of:

"any" — Any attachment is allowed.

A list of SHA-256 hashes allowed for the attachment with the given name.

"allowed_operations" — This controls which document operations may be applied. You can use

this if you want this JWT to only be used for applying a specific set of operations, or to only

permit specific operation types. Possible options:

"any" or not specified at all — There’s no limitation on the operations that are applied,

meaning all operations are allowed.

A JSON object containing one or both:

"operationTypes" — A JSON array containing a list of all document operations

permitted. Every document operation that’s not part of this list will be rejected unless

explicitly permitted by a list of operations, as described below.

"operations" — A JSON array containing a list of operation sets that are allowed.

Keep in mind that this needs to match the specified operations exactly. Even if an

operation isn’t permitted by operationTypes , as long as the operation set matches, the

operation will be permitted.

Generating Tokens

jsonwebtoken

library

openssl genrsa -out jwtRS256.key 40961
2

https://www.npmjs.com/package/jsonwebtoken
https://www.npmjs.com/package/jsonwebtoken

Now use the private key to sign the tokens you hand out to the clients and add the public key to the

 so that Processor will be able to validate the tokens’ signatures.

If you want to quickly test PSPDFKit Processor, you can also use the key from our

(passphrase: secret). Make sure to change to a self-generated key before going into production:

Was this helpful?

Questions?

Get the public key in PEM format:
openssl rsa -in jwtRS256.key -pubout -outform PEM -out jwtRS256_pub.pem

3
4

Processor’s configuration

example apps

// index.js

const express = require('express');
const router = express.Router();
const fs = require('fs');
const jwt = require('jsonwebtoken');
const key = fs.readFileSync('./jwt.pem');
const token = jwt.sign(

{ allowed_operations: 'any', allowed_files: 'any' },
key,
{
algorithm: 'RS256',
expiresIn: 60 * 60, // 1hr, this will set the `exp` claim for us.

},
);

/* GET home page. */
router.get('/', function (req, res, next) {

res.render('index', { token: token });
});

module.exports = router;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

YES NO

Contact us

https://www.nutrient.io/guides/processor/getting-started/configuration
https://github.com/PSPDFKit/pspdfkit-server-example-nodejs/blob/master/config/jwt.pem
https://www.nutrient.io/company/contact/

