
DOCS CONTACT SALES

Processor

Get Started

Getting started with Processor

GETTING STARTED PROCESSOR

RUST

PSPDFKit Processor has been deprecated and replaced by . To migrate to

Document Engine and unlock advanced document processing capabilities, refer to our

. Learn more about these enhancements on our .

This guide walks you through the steps necessary to start PSPDFKit Processor. It also shows you

how to use it to process documents. By the end, you’ll be able to merge two PDF documents into

one using Processor’s HTTP API from Rust.

PSPDFKit Processor runs on a variety of platforms. The following operating systems are

supported:

Document Engine

migration guide blog

Requirements

macOS Ventura, Monterey, Mojave, Catalina, or Big Sur

Windows 10 Pro, Home, Education, or Enterprise 64-bit
ASK AI

SDK Low-Code Workflow DWS API

7/24/25, 4:41 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=rust 1/6

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/try/
https://www.nutrient.io/getting-started/processor/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Regardless of your operating system, you’ll need at least 4 GB of RAM.

PSPDFKit Processor is distributed as a Docker container. To run it on your computer, you need to

install a Docker runtime distribution for your operating system.

MACOS WINDOWS LINUX

Install and start Docker Desktop for Mac. Refer to for instructions.

First, open your terminal emulator.

MACOS WINDOWS LINUX

Use the terminal emulator integrated with your code editor or IDE. Alternatively, you can use

Terminal.app or .

Now run the following command:

This command might take a while to run, depending on your internet connection speed. Wait until

you see a message like this in the terminal:

Ubuntu, Fedora, Debian, or CentOS. Ubuntu and Debian derivatives such as Kubuntu or

Xubuntu are supported as well. Currently only 64-bit Intel (x86_64) processors are

supported.

1 Installing Docker

the Docker website

2 Starting PSPDFKit Processor

iTerm2

docker run --rm -t -p 5000:5000 pspdfkit/processor:2023.11.1

7/24/25, 4:41 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=rust 2/6

https://docs.docker.com/docker-for-mac/install/
https://iterm2.com/

The PSPDFKit Processor is now up and running!

The interaction with PSPDFKit Processor happens via its HTTP API. Documents and commands

are sent in API request calls, and the resulting files are received in API response calls. API calls are

invoked from the Rust code, so you need to install Rust.

To install Rust:

If you don’t have any sample documents, download and use these files: and

Paste the following content into the Cargo.toml file in the merging-pdfs-pspdfkit project

directory:

[info] 2023-02-05 18:56:45.286 Running PSPDFKit Processor version 2023.11.1

3 Installing Rust

Follow the instructions for your operating system in Rust’s .1 Installation Guide

Go to any directory in your system using your terminal. Create a new directory called

merging-pdfs and go the newly created directory:

2

mkdir merging-pdfs
cd merging-pdfs

1
2

Create a new cargo project:3

cargo new merging-pdfs-pspdfkit

Run the project with the cargo run command.4

4 Merging PDFs with Rust

cover.pdf

document.pdf

7/24/25, 4:41 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=rust 3/6

https://www.rust-lang.org/tools/install
https://www.nutrient.io/getting-started/server/processor/files/cover.pdf
https://www.nutrient.io/getting-started/server/processor/files/document.pdf

Next, replace /path/to/cover.pdf on line 24 and /path/to/document.pdf on line 30 with the

actual paths to the example documents on your machine. Then, replace the contents of the

src/main.rs file with this code:

[dependencies]
tokio = { version = "1.23.0", features = ["full"] }
reqwest = { version = "0.11.13", features = ["json", "multipart"] }
serde_json = "1.0.91"

1
2
3
4

use reqwest::Result;
use std::borrow::Cow;
use std::fs;
use std::fs::File;
use std::io::Write;

#[tokio::main]
async fn main() -> Result<()> {
 // Multipart Request
 let body = serde_json::json!({
 "parts": [
 {
 "file": "cover"
 },
 {
 "file": "document"
 }
],
 "output": {
 "type": "pdf"
 }
 });

 let cover = fs::read("src/cover.pdf").unwrap();
 let cover_part = reqwest::multipart::Part::bytes(cover)
 .file_name("cover.pdf")
 .mime_str("application/pdf")
 .unwrap();

 let document = fs::read("src/document.pdf").unwrap();
 let document_part = reqwest::multipart::Part::bytes(document)
 .file_name("document.pdf")
 .mime_str("application/pdf")
 .unwrap();

 let instructions = serde_json::to_vec(&body).unwrap();
 let instructions_bytes = Cow::from(instructions);
 let instructions_part = reqwest::multipart::Part::bytes(instructio

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

7/24/25, 4:41 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=rust 4/6

Most of this code deals with creating and sending a containing files and

instructions to Processor’s /build endpoint using Rust’s reqwest crate.

To run the code, ensure you’re in the merging-pdfs directory and type the following command in

your terminal:

 let form = reqwest::multipart::Form::new()
 .part("cover", cover_part)
 .part("document", document_part)
 .part("instructions", instructions_part);

 let client = reqwest::Client::new();
 let res = client
 .post("http://localhost:5000/build")
 .multipart(form)
 .send()
 .await?;

 let mut result_file = File::create("result.pdf").expect("Error cre

 result_file
 .write_all(&res.bytes().await.unwrap())
 .expect("Error writing to file");

 Ok(())
}

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

multipart request

cargo run

7/24/25, 4:41 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=rust 5/6

https://www.nutrient.io/blog/a-brief-tour-of-multipart-requests/

Was this helpful?

Questions?

To learn more about the various actions you can apply to PDFs using PSPDFKit Processor, go to

Processor’s .API Reference

YES NO

Contact us

7/24/25, 4:41 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=rust 6/6

https://www.nutrient.io/guides/processor/api/build-api-reference/
https://www.nutrient.io/company/contact/

