7/24/25, 4:42 PM Getting started with Processor | Nutrient

Processor

Get Started

Getting started with Processor

GOLANG

PSPDFKit Processor has been deprecated and replaced by Document Engine. To migrate to
Document Engine and unlock advanced document processing capabilities, refer to our
migration guide. Learn more about these enhancements on our blog.

This guide walks you through the steps necessary to start PSPDFKit Processor. It also shows you
how to use it to process documents. By the end, you’ll be able to merge two PDF documents into

one using Processor’s HTTP APl with Golang.

Requirements

PSPDFKit Processor runs on a variety of platforms. The following operating systems are
supported:

macOS Ventura, Monterey, Mojave, Catalina, or Big Sur

Windows 10 Pro, Home, Education, or Enterprise 64-bit

https://www.nutrient.io/getting-started/processor/?integration=golang 177

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/try/
https://www.nutrient.io/getting-started/processor/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

7/24/25, 4:42 PM Getting started with Processor | Nutrient

Ubuntu, Fedora, Debian, or CentOS. Ubuntu and Debian derivatives such as Kubuntu or
Xubuntu are supported as well. Currently only 64-bit Intel (x86_64) processors are
supported.

Regardless of your operating system, you’ll need at least 4 GB of RAM.

1 Installing Docker

PSPDFKit Processor is distributed as a Docker container. To run it on your computer, you need to

install a Docker runtime distribution for your operating system.

MACOS WINDOWS LINUX

Install and start Docker Desktop for Mac. Refer to the Docker website for instructions.

2 Starting PSPDFKIit Processor

First, open your terminal emulator.

MACOS WINDOWS LINUX

Use the terminal emulator integrated with your code editor or IDE. Alternatively, you can use

Terminal.app oOrilerm2.

Now run the following command:

This command might take a while to run, depending on your internet connection speed. Wait until
you see a message like this in the terminal:

[|

https://www.nutrient.io/getting-started/processor/?integration=golang 2/7

https://docs.docker.com/docker-for-mac/install/
https://iterm2.com/

7/24/25, 4:42 PM Getting started with Processor | Nutrient

The PSPDFKit Processor is now up and running!

3 Installing Golang

The interaction with PSPDFKit Processor happens via its HTTP APl. Documents and commands
are sent in APl request calls, and the resulting files are received in API response calls. API calls are

invoked from the Go package, so you need to install Golang.

To install Golang:

1 Follow the instructions for your operating system on Golang’s Download and Installation
Page.
2 Go to any directory in your system using your terminal. Create a new directory called

merging-pdfs and go to the newly created directory:

3 Create anew go module by running the command below from the merging-pdfs
directory. Replace YOUR-GITHUB-USERNAME with your actual GitHub username:

4 Create a new file in the directory called merge.go and add the following content:

package

Ilfmtll

https://www.nutrient.io/getting-started/processor/ ?integration=golang 3/7

https://go.dev/doc/install
https://go.dev/doc/install

7/24/25, 4:42 PM Getting started with Processor | Nutrient

k "Hello World")

5 Run the file from your terminal with go run merge.go to make sure everything is working

properly.

+ Merging PDFs with Golang

If you don’t have any sample documents, download and use these files: cover.pdf and

document.pdf

Replace the contents of the merge.go file with the code below. Replace /path/to/cover.pdf in
lines 37 and 46, and replace /path/to/document.pdf inlines 59 and 68 with the actual paths to the

example documents on your machine:

https://www.nutrient.io/getting-started/processor/ ?integration=golang

r ™~
package
import
"bytes"
"fmt"
nioh
"Log"
"mime/multipart"
"net/http"
g
"path/filepath"
func
{
"parts": [
{
"file": "cover"
}I
{
"file": "document"
b
]
b
"instructions"
if

4/7

https://www.nutrient.io/getting-started/server/processor/files/cover.pdf
https://www.nutrient.io/getting-started/server/processor/files/document.pdf

7/24/25, 4:42 PM Getting started with Processor | Nutrient

33 log.Fatalln(err)

34}

35

36 // Replace "/path/to/cover.pdf".

37 cover, err := o0s.0pen("/path/to/cover.pdf")
38 defer cover.Close()

58 // Replace "/path/to/document.pdf".

60 defer document.Close()

80 err = writer.Close()
81 if err '= nil {

82 fmt.Println(err)
83 return

84 }

85

https://www.nutrient.io/getting-started/processor/ ?integration=golang

39

40 if err !'= nil {

41 log.Fatalln(err)

42 return

43 }

44

45 // Replace "/path/to/cover.pdf".
46 coverPart, err := writer.CreateFormFile("cover", filepath.Base("/pat
47 if err '= nil {

48 log.Fatalln(err)

49 return

50 }

51

52 _, err = io.Copy(coverPart, cover)
53 if err != nil {

54 log.Fatalln(err)

55 return

56 }

57

59 document, err := os.0pen("/path/to/document.pdf")

61

62 if err != nil {

63 log.Fatalln(err)

64 return

65 }

66

67 // Replace "/path/to/document.pdf".

68 documentPart, err := writer.CreateFormFile("document", filepath.Base
69 if err != nil {

70 log.Fatalln(err)

71 return

72}

73

74 _, err = io.Copy(documentPart, document)
75 if err != nil {

76 log.Fatalln(err)

77 return

78 }

79

57

7/24/25, 4:42 PM Getting started with Processor | Nutrient

"http://localhost:5000/build"
"POST"

if
return

"Content-Type"
if
return
defer

"result.pdf"
if
return
. %

To run the code, ensure you're in the merging-pdfs directory and type the following command in

your terminal:

Most of this code, up until the client.Do(req) statement, constructs a multipart request that’s
sent to Processor. It includes two files — in this case, cover and document — and a list of
instructions for PSPDFKit Processor.

By default, PSPDFKit Processor’s output (the /build endpoint)is the result of merging all input
documents or parts of the instructions.

To learn more about the /build instructions, go to the Processor APl Reference article.

The result of this code is a merged result.pdf fileinthe merging-pdfs directory.

https://www.nutrient.io/getting-started/processor/ ?integration=golang 6/7

https://www.nutrient.io/blog/a-brief-tour-of-multipart-requests/
https://www.nutrient.io/guides/processor/api/build-api-reference/

7/24/25, 4:42 PM Getting started with Processor | Nutrient

® ® = result.pdf

All Annotated Bookmarked

Was this helpful?

Questions? Contact us

https://www.nutrient.io/getting-started/processor/?integration=golang 71

https://www.nutrient.io/company/contact/

