
DOCS CONTACT SALES

Processor

Get Started

Getting started with Processor

GETTING STARTED PROCESSOR

PYTHON

PSPDFKit Processor has been deprecated and replaced by . To migrate to

Document Engine and unlock advanced document processing capabilities, refer to our

. Learn more about these enhancements on our .

This guide walks you through the steps necessary to start PSPDFKit Processor. It also shows you

how to use it to process documents. By the end, you’ll be able to merge two PDF documents into

one using Processor’s HTTP API from Python.

PSPDFKit Processor runs on a variety of platforms. The following operating systems are

supported:

Document Engine

migration guide blog

Requirements

macOS Ventura, Monterey, Mojave, Catalina, or Big Sur

Windows 10 Pro, Home, Education, or Enterprise 64-bit
ASK AI

SDK Low-Code Workflow DWS API

7/24/25, 4:41 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=python 1/6

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/try/
https://www.nutrient.io/getting-started/processor/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Regardless of your operating system, you’ll need at least 4 GB of RAM.

PSPDFKit Processor is distributed as a Docker container. To run it on your computer, you need to

install a Docker runtime distribution for your operating system.

MACOS WINDOWS LINUX

Install and start Docker Desktop for Mac. Refer to for instructions.

First, open your terminal emulator.

MACOS WINDOWS LINUX

Use the terminal emulator integrated with your code editor or IDE. Alternatively, you can use

Terminal.app or .

Now run the following command:

This command might take a while to run, depending on your internet connection speed. Wait until

you see a message like this in the terminal:

Ubuntu, Fedora, Debian, or CentOS. Ubuntu and Debian derivatives such as Kubuntu or

Xubuntu are supported as well. Currently only 64-bit Intel (x86_64) processors are

supported.

1 Installing Docker

the Docker website

2 Starting PSPDFKit Processor

iTerm2

docker run --rm -t -p 5000:5000 pspdfkit/processor:2023.11.1

7/24/25, 4:41 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=python 2/6

https://docs.docker.com/docker-for-mac/install/
https://iterm2.com/

The PSPDFKit Processor is now up and running!

The interaction with Processor happens via its HTTP API: You send documents and commands in

the request and receive the resulting file in the response. To do this, you’ll invoke the API from the

Python script. But first, you need to install Python for your operating system:

MACOS WINDOWS LINUX

To install Python, first you need to install the Xcode Command Line Tools. Install them by running

the following command:

The easiest way to install Python on macOS is via Homebrew. Follow the instructions on the

 to install it. Then, to install Python, run:

Verify the installation by running the following command in the terminal:

The output should start with Python 3.9 — you can ignore the rest of the message.

ℹ️ Note: ️If the output doesn’t match the above, try restarting the terminal app by typing

exit and opening it again.

[info] 2023-02-05 18:56:45.286 Running PSPDFKit Processor version 2023.11.1

3 Installing Python

xcode-select --install

Homebrew website

brew install python

python3 --version

4 Merging PDFs

7/24/25, 4:41 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=python 3/6

https://brew.sh/

To make HTTP requests to Processor’s API, you need an HTTP client library. For this scenario,

you’ll use the excellent package. Install it by running the following command:

MACOS WINDOWS LINUX

Now you can create a script to merge the PDFs. It’ll take two file paths as command-line

arguments, send the files to Processor to merge them, and save the result in another file on disk.

Create a merge.py file with the following content:

Requests

python3 -m pip install requests==2.25.1

import sys
import json
import requests

if len(sys.argv) < 3:
 print("Too few arguments.")
 exit(1)

file1 = sys.argv[1]
file2 = sys.argv[2]

url = "http://localhost:5000/build"

payload= {
 "instructions": json.dumps({
 "parts": [
 {
 "file": "file1"
 },
 {
 "file": "file2"
 }
]
})}

files=[
 ('file1',('file1.pdf',open(file1,'rb'),'application/pdf')),
 ('file2',('file2.pdf',open(file2,'rb'),'application/pdf'))
]
headers = {}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

7/24/25, 4:41 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=python 4/6

https://requests.readthedocs.io/en/v2.9.1

The script verifies that the number of arguments is correct and prepares the request data. It

includes two files — file1 and file2 — and a list of instructions for Processor. By default,

Processor’s output (the /build endpoint) is the result of merging all documents or parts of the

instructions . To learn more about the /build instructions, go to Processor’s .

The rest of the code deals with error handling, and if everything goes well, it saves the result in the

result.pdf file in the current working directory.

You can check how it works in practice yourself! Pick any two PDFs on your computer (or use these

two if you don’t have any: ,), and run the script:

MACOS WINDOWS LINUX

Make sure to replace path/to/file1.pdf and path/to/file2.pdf with the actual location

of the PDF files on your computer.

If you used the two files from the links above, you should see a five-page PDF document like this:

response = requests.post(url, data=payload, files=files)

if response.status_code == 200:
 with open("result.pdf", "wb") as f:
 f.write(response.content)
else:
 print(
 f"Request to Processor failed with status code {response.statu
)

32
33
34
35
36
37
38
39
40

API Reference

file1.pdf file2.pdf

python3 merge.py path/to/file1.pdf path/to/file2.pdf

7/24/25, 4:41 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=python 5/6

https://www.nutrient.io/guides/processor/api/build-api-reference/
https://www.nutrient.io/getting-started/server/processor/files/cover.pdf
https://www.nutrient.io/getting-started/server/processor/files/document.pdf

Was this helpful?

Questions?

That’s it! Now you know how to use Processor from Python to perform operations on documents.

YES NO

Contact us

7/24/25, 4:41 PM Getting started with Processor | Nutrient

https://www.nutrient.io/getting-started/processor/?integration=python 6/6

https://www.nutrient.io/company/contact/

