
DOCS CONTACT SALES

Web

Client authentication

Generate JSON Web Tokens for Document

Engine

PSPDFKit Server has been deprecated and replaced by . To migrate to Document

Engine and unlock advanced document processing capabilities, refer to our . Learn

more about these enhancements on our .

JSON Web Tokens (JWTs) used for authentication by PSPDFKit Server can be generated with one of the

many open source libraries that are available and listed on .

WEB GUIDES PSPDFKIT SERVER CLIENT AUTHENTICATION

Document Engine

migration guide

blog

jwt.io

Token requirements

It has to include the standard claim "exp" , which sets the deadline for the validity of the token.

This needs to be a non-negative number using the

.

Unix “Seconds Since the Epoch” timestamp

format

It has to include the user-defined claims "document_id" and "permissions" .

"document_id" is the identifier of a document that has been previously uploaded to the

server. This field has to be a string value.

"permissions" is a list of permission names that define which features will be accessible to

the holder of this token. See the section below for more details.Permissions

It may include the "user_id" claim, which will be stored on any annotation created, updated, or

deleted by the user. ASK AI

SDK Low-Code Workflow DWS API

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://jwt.io/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15
https://www.nutrient.io/guides/web/pspdfkit-server/server-api/instant-layers/
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Available permissions:

Any combination of the above permissions can be included in the permissions list when generating a

JWT. Apart from that, the permissions field of a JWT may have one of the following special values:

It may include the "layer" claim, which defines the that all changes will be

persisted to.

Instant layer

It may include the "collaboration_permissions" claim, which defines fine-grained permissions

for actions allowed by individual users when multiple users are working on the same document.

See the guide for more details.Collaboration Permissions

It may include the "default_group" claim to control the of created annotations,

comments, and form fields.

group

It may include the "password" claim, which defines the password to be used to open

.

password-

protected PDFs

It may include the "creator_name" claim, which ensures all annotations and comments are

created with the specified creator name.

It has to be signed using an asymmetric cryptographic algorithm. PSPDFKit Server supports the

algorithms RS256, RS512, ES256, and ES512. See for details about specific algorithms.RFC 7518

Permissions

"read-document" — Required for viewing a document and its annotations. Without this

permission, it won’t be possible for the user to load the document and perform any operations

on it.

"write" — Required for creating, updating, and deleting annotations in a document. If this

permission isn’t present, PSPDFKit for Web will always be in read-only mode.

"download" — Required for downloading and printing a document’s PDF file.

"cover-image" — Required for accessing the /documents/cover endpoint.

"all-2017.3" will enable all permissions available in the 2017.3 release, namely "read-

document" , "write" , and "download" .

"all-2017.9" will enable all permissions available in the 2017.9 release, namely "read-

document" , "write" , "download" , and "cover-image" .

"all" will enable all permissions supported by the running version of the server.

https://www.nutrient.io/guides/web/pspdfkit-server/server-api/instant-layers/
https://www.nutrient.io/guides/web/collaboration-permissions/introduction-to-collaboration-permissions/
https://www.nutrient.io/guides/web/pspdfkit-server/collaboration-permissions/content-ownership/#group
https://www.nutrient.io/guides/web/pspdfkit-server/server-api/password-protected-pdfs/
https://www.nutrient.io/guides/web/pspdfkit-server/server-api/password-protected-pdfs/
https://www.ietf.org/rfc/rfc7518.html#section-3

The following example shows the creation of a JWT in JavaScript using the jsonwebtoken library.

Generating tokens

Create a key via ssh-keygen :

The private key (jwtRS256.key) is used to sign the tokens you hand out to the clients.

The public key (jwtRS256_pub.pem) needs to be added as a JWT_PUBLIC_KEY in the

 so that the server will be able to validate the tokens’ signatures but won’t be able to

create valid signatures. This example assumes you chose the RS256 algorithm as the

JWT_ALGORITHM in the server’s configuration.

ℹ️ Note: If you want to quickly test PSPDFKit for Web with your application, you can also

use the key from our (passphrase: secret). Make sure to change to a self-

generated key before going into production.

1

ssh-keygen -t rsa -b 4096 -f jwtRS256.key
Enter your passphrase.

Get the public key in PEM format:
openssl rsa -in jwtRS256.key -pubout -outform PEM -out jwtRS256_pub.pem

If the above command fails because newer versions of `ssh-keygen` outpu
convert the key to PEM like this and then repeat the `openssl` command.
ssh-keygen -p -m PEM -t rsa -b 4096 -f jwtRS256.key
openssl rsa -in jwtRS256.key -pubout -outform PEM -out jwtRS256_pub.pem

1
2
3
4
5
6
7
8
9

10

server’s

configuration

example apps

Install the jsonwebtoken dependency:2

npm install --save jsonwebtoken

Read the private key so that it can be used to sign JWTs. In the claims, pass the document ID, the

set of permissions you want to have, and an expiration. You can then use the produced token in

your application:

3

const fs = require("fs");
const jwt = require("jsonwebtoken");
const key = fs.readFileSync("./jwtRS256.key");
const permissions = ["read-document", "write"];
const token = jwt.sign({document_id: "abc", permissions: permissions}, ke
 algorithm: "RS256",
 expiresIn: 60 * 60 // 1hr, this will set the `exp` claim for us.
});

1
2
3
4
5
6
7
8

https://github.com/auth0/node-jsonwebtoken
https://www.nutrient.io/guides/web/pspdfkit-server/configuration/overview/
https://www.nutrient.io/guides/web/pspdfkit-server/configuration/overview/
https://github.com/PSPDFKit/pspdfkit-server-example-nodejs/blob/master/config/jwt.pem

Was this helpful?

Questions?

YES NO

Contact us

https://www.nutrient.io/company/contact/

