» SDK Low-Code Workflow DV

o o
AP Docs contacT sates il |
()

Web

Client authentication

WEB > GUIDES » PSPDFKIT SERVER 1 CLIENT AUTHENTICATION

Generate JWT for mobile authentication

PSPDFKit Server has been deprecated and replaced by Document Engine. To migrate to Document
Engine and unlock advanced document processing capabilities, refer to our migration guide. Learn

more about these enhancements on our blog.

Our Android and iOS SDKs let you use your running PSPDFKit Server instance for converting Office
documents to PDFs. This APl also uses the JWT format for authentication, but it needs a different set of
claims than our document API does. Keep the following in mind when generating a token for mobile

conversion:

It has to include the standard claim "exp" , which sets the deadline for the validity of the token.
This needs to be a non-negative number using the Unix “Seconds Since the Epoch” timestamp

format.

It has to include the custom "sha256" claim, containing the SHA-256 of the Office file you're

planning to convert. This is used so that each token is only able to convert a single document.

It has to be signed using an asymmetric cryptographic algorithm. PSPDFKIit Server supports the
algorithms RS256, RS512, ES256, and ES512. See RFC 7518 for details about specific algorithms.

Generating tokens

The following example shows the creation of a JWT in JavaScript using the (jsonwebtoken | li

1 Create a key via ssh-keygen :

.

https://www.nutrient.io/contact-sales?=sdk
https://github.com/auth0/node-jsonwebtoken
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/guides/android/features/office-conversion/
https://www.nutrient.io/guides/ios/features/office-conversion/
https://jwt.io/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15
https://www.ietf.org/rfc/rfc7518.html#section-3
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

ssh-keygen -t rsa -b 4096 -f jwtRS256.key

openssl rsa -in jwtRS256.key -pubout -outform PEM -out JjwtRS256 pub.pem

ssh-keygen -p -m PEM -t rsa -b 4096 -f jwtRS256.key
openssl rsa -in JjwtRS256.key -pubout -outform PEM -out jwtRS256 pub.pem

1
2
3
4
5
6
7
8
)
0

=

The private key (jwtrs256.key) is used to sign the tokens you hand out to the clients.

The public key (jwtrRs256_pub.pem) needs to be added as a Jwr_puBLIC_KEY in the server’s

configuration so that the server will be able to validate the tokens’ signatures but won't be able to

create valid signatures. This example assumes you chose the rs256 algorithm as the
Jwr_ALGORITHM in the server’s configuration.

&) Note: If you want to quickly test PSPDFKit for Web with your application, you can also
use the key from our example apps (passphrase: secret). Make sure to change to a self-
generated key before going into production.

2 Install the jsonwebtoken dependency:

npm install --save jsonwebtoken

3 Read the private key so that it can be used to sign JWTs. In the claims, pass the SHA-256 of the
Office file you're planning to convert and an expiration. You can then use the produced token in

your application:

fs = require("fs");
jwt require ("
key fs.readFileSync("

token = jwt.sign({sha256:

algorithm: 7

expiresIn:

})i

Was this helpful?

https://www.nutrient.io/guides/web/pspdfkit-server/configuration/overview/
https://www.nutrient.io/guides/web/pspdfkit-server/configuration/overview/
https://github.com/PSPDFKit/pspdfkit-server-example-nodejs/blob/master/config/jwt.pem

Questions? Contact us

https://www.nutrient.io/company/contact/

