» SDK Low-Code Workflow DV

o o
AP Docs contacT sates il |
()

Web

Deployment

WEB > GUIDES PSPDFKIT SERVER = DEPLOYMENT

AWS deployment for PSPDFKIit Server

PSPDFKit Server has been deprecated and replaced by Document Engine. To migrate to Document
Engine and unlock advanced document processing capabilities, refer to our migration guide. Learn
more about these enhancements on our blog.

This guide is designed to provide an overview of how to deploy PSPDFKit Server to AWS using S3, RDS,
and ECS. It also includes information on how to set up all the services you need, like:

AWS S3 Bucket — Stores all your documents and assets

AWS Relational Database Service — Provides the PostgreSQL database needed by PSPDFKit
Server

AWS Elastic Container Service — Manages container configuration and scaling

Following this guide will give you a completely cloud-based setup of PSPDFKit Server, including a

hosted database and all your documents being stored on an S3 bucket.

Note that this guide only represents an example configuration and is by no means an optimal and
production-ready way to set up PSPDFKit Server on AWS. As such, you'll probably have to adjust

networking and security options according to your requirements.

You'll start by setting up the storage backend and database. You'll continue by setting up an ECS cluster

including services, task definitions, and scaling tactics.

Setting up your S3 bucket

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Setting up your S3 bucket as your storage backend consists of two steps: creating a bucket, and adding
a policy to control which users and roles should have access to the bucket. Create a bucket in the AWS
S3 Console, give it a name, and set a region. You can leave all other settings at their default

configurations.

You'll need both the region and the name of the bucket later on when configuring your Docker
container. Since you don't want your bucket to be publicly accessible, you need to use a policy to
grant access to a specific IAM user or role. You can create a minimal user with programmatic access
and without any permissions via the IAM console.

Review

Review your choices. After you create the user, you can view and the au and access key.

A This user has no permissions
You haven't given this user any permissions. This means that the user has no access to any AWS service or resource. Consider returning to the previous step and adding some type of permissions.

User details

User name pspdfkit-server

AWS access type Programmatic access - with an access key

Cancel Previous

After creating the user, you can find the user ARN in the user summary. It'll look something like this:

arn:aws:iam::123345789012:user/pspdfkit .

You can now select your previously created S3 bucket and go to the permissions tab, where you'll be
able to set the bucket policy. You can allow a user full access to the bucket via the following policy, or

you can generate your own policy via the AWS Policy Generator:

"Version":
"Statement": [

{

"Effect":

"Principal": {
"AWS":

b

"Action": |

0 4 o U W N -

I

"Resource": |

https://s3.console.aws.amazon.com/s3/home
https://s3.console.aws.amazon.com/s3/home
http://awspolicygen.s3.amazonaws.com/policygen.html

After saving the policy, your bucket is ready to be used as your asset storage backend.

Setting up your database

Setting up a PostgreSQL database via AWS RDS is a bit more complicated; not only will you need to
create the database, but this database will exist within a VPC and security group, requiring you to set up

an inbound rule to allow PSPDFKit Server instances to access your database.

Launch a new PostgreSQL database via the AWS RDS Console and set a username and password. In
the advanced setting, create a new VPC and set a database name. You'll need the database name,
username, and password later when configuring PSPDFKit Server. Once the database is launched, you
can see its status in the instances list of the AWS RDS Console.

Click on the newly created database, and then find and make note of the VPC group, as you'll need it

when setting up the container.

Setting up the container cluster

The next steps are setting up the cluster that groups and manages container instances and defining
tasks that will run PSPDFKIit Server. These containers will run images served by our container
repository, connect to your PostgreSQL database, and save documents to your S3 bucket.

The first step is creating a cluster on the AWS ECS Cluster Console. Use the EC2 Linux + Networking
cluster template, leave the instance configuration as is or adjust it to your liking, and set the VPC to

match the one of your database, but create a new security group.

Now you need to create a task definition on the AWS ECS Task Definition Console. Select the EC2
launch type compatibility, give it a name, and select bridge as the network mode. You'll also need to
assign the task execution role and add a container. To configure the container, click Add Container and
set the following options:

Settheimage to public.ecr.aws/pspdfkit/pspdfkit:2024.1.2 .
Map host port so to container port 5000 .

Enter the environment variables as explained in the configuration overview guide and as shown
below.

Note that, since this example uses S3 as the storage backend, it's also necessary to set S3-specific

configuration options, as described in our asset storage guide.

https://console.aws.amazon.com/rds/home
https://console.aws.amazon.com/rds/home?#dbinstances:
https://console.aws.amazon.com/ecs/home#/clusters/
https://console.aws.amazon.com/ecs/home#/taskDefinitions
https://www.nutrient.io/guides/web/pspdfkit-server/configuration/overview/
https://www.nutrient.io/guides/server/configuration/asset-storage/

Add container

Container name* PSPDFKit-Server

Image* | public.ecr.aws/pspdfkit/pspdfkit:2021.3.0

Private repository
authentication*

Memory Limits (MiB)* = Soft limit v | 512

© Add Hard limit

Define hard and/or soft memory limits in MiB for your container. Hard and soft limits
correspond to the ‘'memory" and ‘'memoryReservation’ parameters, respectively, in
task definitions.

ECS recommends 300-500 MiB as a starting point for web applications.

Port mappings

80 5000 tcp ~

© Add port mapping

If you intend to use an Application Load Balancer (ALB) with your tasks, you can set
the host port to 0 to enable dynamic host port mapping. This allows you to run more

than one copy of a task on a container instance. Learn more

Add container

ENVIRONMENT

CPU units (i)

GPUs (1]

Essential v (i]

Entry point | comma delimited: sh,-c (1]

%
Command comma delimited: echo,hello world (1]
z
Working directory | /usr/zpp (1]
's Y
Environment variables
You may also designate AWS Systems Manager Parameter Store keys or ARNs using the 'valueFrom' field. ECS will inject the value into containerg at run
ACTIVATION_KEY Value v ACTIVATION_KEY o
API_AUTH_TOKEN Value v API_AUTH_TOKEN %)
ASSET_STORAGE_BACKEND Value - postgres (x]
DASHBOARD_USERNAME Value v dashboard o
DASHBOARD_PASSWORD Value v pspdfkit)
JWT_ALGORITHM Value v RS256 o
JWT_PUBLIC_KEY Value v o e BEGIN PUBLIC KEY----- MI (x]
NANATADAOE Vdmbsnm — - - 0
\ J

To correctly paste the public key, it's necessary to use the Configure via JSON option. Additionally,
the newline characters of the public key need to be replaced with the \n escape sequence.

JSON x

"value": "secret"

“name": "DASHBOARD_USERNAME",
"val

JBALd41 +bYQ94t
END PUBLIC KEY-----"

.

Cancel m

We strongly recommend enabling logging integration with AWS CloudWatch so that the server logs are

retained across restarts and are easier to search through.

Log configuration ¢ Auto-configure CloudWatch Logs

awslogs ~
awslogs-group Value N /ecs/pspdtkit-server
awslogs-region Value v eu-central-1
awslogs-stream-pre Value v ecs (%)
Add key Value v Add value

The last step is to select your cluster on the AWS ECS Cluster Console and create a service that

actually runs the task. Select the task definition you just created and define the number of tasks you
want to run. Select no load balancer and do not activate auto scaling.

If you select your cluster in the AWS ECS Cluster Console, you'll now see a running task in the Tasks tab.

Click on it and check out the Logs tab to see your server starting up. If everything is set up correctly, it'll
show a message similar to the following: info] Running server version 2024.1.2, licensed for

production use. pid=<0.1912.0> .

Back in the Details tab, click on the container instance. You can now copy the public DNS value into your
browser’s address bar to check if your server shows you a psppFkit Server up and running. Message.
Try tovisit /dashboard and log in using the dashboard username and password set in the task
definition.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://console.aws.amazon.com/ecs/home#/clusters/
https://console.aws.amazon.com/ecs/home#/clusters/

Network settings

Next you'll need to create a new inbound rule for our PostgreSQL database to allow our container
instances network access. First you need to find out what security group our EC2 instance is part of,
and then you need to allow access to the database from this security group. You can find the security
group of your EC2 instance by going to your cluster’s EC2 Instances tab in the AWS ECS Cluster
Console and clicking on the EC2 instance ID. Take note of the group ID (similarto sg-123abcae) of the

security group.

Select your instance in the AWS RDS Instance Console and look for the Security Group property. Select
the security group and add a new inbound rule: Select PostgreSQL as the type, paste the group ID you
just noted, and save the newly created rule.

Results

If everything worked out, you're now running a PSPDFKit Server setup using AWS Container Services
connected to an AWS-hosted PostgreSQL database and using an S3 bucket as document and asset

storage.

You can now start using PSPDFKit for Web, Android, or iOS to integrate document serving and syncing
capabilities into your applications.

Limitations

Note that this setup is by no means a one-size-fits-all solution, but rather a minimal setup for using the
infrastructure and services provided by AWS to deploy and run PSPDFKit Server. We recommend
looking deeper into AWS to deploy a production-ready setup.

Performance

The performance of a PSPDFKit Server instance on AWS largely depends on the amount of compute

resources provided by the underlying compute platform: AWS EC2 or AWS Fargate.

EC2-based services

When using AWS EC2 as an underlying compute platform for ECS, available resources are determined
by the instance type you choose. PSPDFKit Server supports both AMD- and Intel-based EC2 instance

https://console.aws.amazon.com/ecs/home#/clusters/
https://console.aws.amazon.com/ecs/home#/clusters/
https://console.aws.amazon.com/rds/home?#dbinstances:
https://console.aws.amazon.com/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/getting-started-ecs-ec2.html
https://aws.amazon.com/fargate/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/getting-started-ecs-ec2.html

types, as well as AWS Graviton-based instances. In general, we suggest choosing Graviton-based

instances, as they offer a superior price-to-performance ratio.

Be cautious about using burstable instances (i.e. T2, T3, and T3a tier). These instance types provide
increased performance when the CPU credits are available. However, once credits run out, PSPDFKit
Server may not be able to process documents as expected. For example, you may observe that Server
errors out when you upload large documents. In such a case, check the Server logs and see if errors
overlap with high CPU usage and depleting CPU credits.

To further limit the resources assigned to PSPDFKit Server containers, you can optionally configure the

task size in your ECS task definition.

Task size (2}

The task size allows you to specify a fixed size for your task. Task size is required for tasks using the Fargate launch type and is optional for the EC2 launch type. Container level memory settings are optional when task size
is set. Task size is not supported for Windows containers.

Task memory (MiB) 4096

The amount of memory (in MiB) used by the task. It can be expressed as an integer using MiB, for example 1024, or as a string using GB, for example '1GB' or '1 gb'.
Task CPU (unit) 2 vCPU

The number of CPU units used by the task. It can be expressed as an integer using CPU units, for example 1024, or as a string using vCPUs, for example '1 vCPU' or '1
vepu'.

Note that you can’t assign more resources than are provided by a single EC2 instance you choose.

Fargate-based services

AWS Fargate dynamically provisions compute and memory resources you request so that you don't
need to manage virtual machines, as is the case in case of EC2. With Fargate, it's necessary that you
specify the task size in your ECS task definition.

Task size (2}

The task size allows you to specify a fixed size for your task. Task size is required for tasks using the Fargate launch type and is optional for the EC2 launch type. Container level memory settings are optional when task size
is set. Task size is not supported for Windows containers.

Task memory (MiB) = 4096

The amount of memory (in MiB) used by the task. It can be expressed as an integer using MiB, for example 1024, or as a string using GB, for example '1GB' or '1 gb'.

Task CPU (unit) 2 vCPU

The number of CPU units used by the task. It can be expressed as an integer using CPU units, for example 1024, or as a string using vCPUs, for example '1 vCPU' or '1
vepu'.

This amount of resources will be available to the running PSPDFKit Server container.

Container memory limits

Regardless of the launch type used, you can also configure the memory limit for the container itself.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://aws.amazon.com/fargate/

Memory Limits (MiB)* = Hard limit ¥ || 4096 (1]

© Add Soft limit

Define hard and/or soft memory limits in MiB for your container. Hard and soft limits correspond to the
‘memory” and ‘'memoryReservation’ parameters, respectively, in task definitions.

ECS recommends 300-500 MiB as a starting point for web applications.

We recommend not setting this limit and instead relying on the task size.

Monitoring with CloudWatch

ECS services on AWS are automatically monitored with AWS CloudWatch. You can use CloudWatch to

observe the CPU and memory utilization of your ECS clusters and services.

CloudWatch

Untitled graph 1h 3h 12h 1d 3d 1w custom ~ Line v Actions IS (2]
Dashboards .
Alarms
Percent
233

Billing 1.37
Logs

L

©9 groups 0.401

Insights 17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00 19:15 19:30 19:45

] Metrics ® MemoryUtilization @ CPUUtilization

Events

Rules All metrics | Graphed metrics (2/3) Graph options Source

Event Buses
ServiceLens Frankfurt v All > ECS > ClusterName, ServiceName Q Graph search

Service Map

v ClusterName (2) ServiceName Metric Name

Traces
Container Insights E33 v pspdfkit-server-troubleshooting pspdfkit-server MemoryUtilization

Resources v pspdfkit-server-troubleshooting pspdfkit-server CPUUtilization

Performance Monitoring

You might see that high resource utilization aligns with an increased error log rate (if you enabled

CloudWatch Logs integration in your container settings).

CloudWatch CloudWatch CloudWatch Logs Logs Insights Switch to the original interface.
Dashboards
4
Alarms
v 5m 30m 1h 3h 12h custom (4w)
l Clear l l /Jecs/pspdfkit-server X
fields @timestamp, @message
Billing | sort @timestamp desc
| filter @message =~ "error"
Logs | limit 20
Log groups
| Insights
4
Metrics

Events E==n

In this case, it most likely means there are too few resources provisioned for the PSPDFKit Server
container for the amount of work it's doing. To address this, choose a bigger EC2 instance type or

request more resources if you're using Fargate.

Make sure to check out the documentation for AWS CloudWatch Logs and AWS CloudWatch metrics.

https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

Was this helpful?

." Y ES m

Questions? Contact us

https://www.nutrient.io/company/contact/

