
DOCS CONTACT SALES

Web

Signature lifecycle

How to implement digital signatures in

PDFs

PSPDFKit Server has been deprecated and replaced by . To migrate to Document

Engine and unlock advanced document processing capabilities, refer to our . Learn

more about these enhancements on our .

Under the hood, the process of signing a document via PSPDFKit Server is divided into three phases:

This architecture ensures that PSPDFKit doesn’t need access to the private key that ultimately will be

used to produce the signature value, leaving you complete freedom to choose which strategy to use to

manage its lifecycle and security.

The signing service is a network service that you’re responsible for maintaining and operating.

WEB GUIDES PSPDFKIT SERVER DIGITAL SIGNATURES SIGNATURE LIFECYCLE

Document Engine

migration guide

blog

PSPDFKit Server prepares the document for a signature, adding an invisible form field that will

contain the signature value.

1

PSPDFKit Server then contacts an external signing service you’re responsible for setting up,

which will provide a compliant signature value.

2

PSPDFKit Server applies the returned signature to the document and saves it, storing the final

file as an asset associated with the document and the used Instant layer.

3

The signing service

ASK AI

SDK Low-Code Workflow DWS API

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

It needs to expose a single HTTP endpoint of your choice that receives all the information required to

calculate a compliant digital signature, and it should return a DER PKCS#7 container that can be set as

a value of the digital signature field.

For example, say you want to sign a document with the ID my-document-id via the Server API:

The request accepts an optional signingToken string parameter, which will be forwarded to the

signing service in the exact same shape.

You can use it to pass a token that can be used to verify the authenticity of the signing request or to

provide identity information about the user applying the signature.

The signing endpoint will receive a request with the following schema:

In the example above, we assume that the signing service can be accessed at http://signing-

server:6000/sign .

The endpoint will receive a JSON-encoded POST request containing:

POST http://localhost:5000/api/documents/my-document-id/sign
Authorization: Token token="<secret token>"
Content-Type: application/json

{
 "signingToken" : "custom-token"
}

1
2
3
4
5
6
7

POST http://signing-server:6000/sign
Content-Type: application/json

{
 "encoded_contents" : "CkVudW1lcmF0aW5nIG9iamVjdHM6IDExLCBkb25lLgpDb3VudGluZyB
 "digest" : "aab7fe5d814e7e8048275d19693435013727ee8002b85ba8edc29321fc2edfc9
 "signing_token" : "custom-token"
}

1
2
3
4
5
6
7
8

The Base64-encoded contents of the file to sign. This represents the portion of the PDF

document covered by the digital signature, minus the byte range that will contain the signature

itself. Note that since it’s Base64-encoded, you’ll need to decode it before signing it.

The digest for the contents to be signed (with the hash calculated before the contents are

encoded to Base64). If your language and encryption libraries support it, you can perform the

For more details, refer to on GitHub.

We recommend setting up the signing service as a container on the same network as PSPDFKit Server

and without external network access to guarantee fast, consistent performance and better security.

Once the signing service is up and running, you can configure PSPDFKit Server to use it by setting the

SIGNING_SERVICE_URL to the signing service endpoint, e.g. http://signing-service:6000/sign . For

more information on configuration and customization, refer to our guide.

To digitally sign a document, perform a call to the PSPDFKit.Instance#signDocument method. As its first

argument, during the signing preparation of the document for the PKCS#7 container, you can optionally

pass an object with a placeholderSize property that can be used to override the default size that’s

reserved for the signature.

As a second argument, you can optionally specify an object with the signingToken string property that

was described in the . Refer to the for more details:

Was this helpful?

signature operation using the hash as the signature contents. In such a case, make sure you

configure PSPDFKit Server to use at least sha256 as its hashing algorithm.

The signing token, forwarded from the previous step.

our signing service reference implementation

configuration

Applying a signature

previous subsection API documentation

instance
 .signDocument(null, {
 signingToken: "user-1-with-rights"
 })
 .then(() => {
 console.log("document signed.");
 })
 .catch((error) => {
 console.error("The document could not be signed.", error);
 });

1
2
3
4
5
6
7
8
9

10

YES NO

https://www.nutrient.io/api/web/PSPDFKit.Instance.html#signDocument
https://github.com/PSPDFKit/pspdfkit-web-signing-service-example
https://www.nutrient.io/guides/server/configuration/overview/
https://www.nutrient.io/api/web/PSPDFKit.Instance.html#signDocument

Questions? Contact us

https://www.nutrient.io/company/contact/

