» SDK Low-Code Workflow DV

o o
AP Docs contacT sates il |
()

Web

Monitoring

WEB > GUIDES » PSPDFKIT SERVER 1 MONITORING

Enable metrics export

PSPDFKit Server has been deprecated and replaced by Document Engine. To migrate to Document
Engine and unlock advanced document processing capabilities, refer to our migration guide. Learn
more about these enhancements on our blog.

Similar to how it works with logs, Docker allows you to gather system-level metrics about running
containers, like CPU usage, memory consumption, block device 10, etc. AWS, Google Cloud Platform,
and Azure all offer solutions to collect these metrics from containers launched on their respective

infrastructures.
See the following:

Using Container Insights
Cloud Operations for GKE

Enable Azure Monitor for containers

Since version 2020.5.0, Server provides the capability to send internal metrics to any metrics engine
supporting the DogStatsD protocol, which is an extension of the popular StatsD protocol. Internal
metrics offer more fine-grained insights into Server performance and help to pinpoint specific issues.
Check out our metrics integration section below on how to enable internal Server metrics when running

on-premises or in the cloud. The list of all exported metrics is available here.

Metrics integration

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/overview
https://docs.docker.com/config/containers/runmetrics/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://cloud.google.com/kubernetes-engine-monitoring
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-onboard
https://docs.datadoghq.com/developers/dogstatsd/
https://github.com/statsd/statsd
https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/metrics-integration/
https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/server-metrics
https://docs.datadoghq.com/developers/dogstatsd/
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

PSPDFKit Server sends metrics using an open DogStatsD protocol, which is an extension of the
popular StatsD protocol. Any metric collection engine that understands this protocol can ingest metrics
exported by Server — including Telegraf, AWS CloudWatch Agent, and DogStatsD itself.

To enable exporting metrics, set the srtarsp_rHosT and sTaTsp_porT configuration variables to point to

the hostname and port where the collection engine is running.

You can also define custom metric tags by setting the starsp custom Tacs environment variable to a
comma-separated list of key-value pairs (with key and value separated by a =). For example, if you
want to tag metrics with a region and a role, you can set the environment variable to

region=eu,role=viewer .

This guide covers instructions on how to integrate Server metrics with various metric collection

systems, more specifically:

Docker-based setup with Telegraf, InfluxDB, and Grafana
AWS CloudWatch
Google Cloud Monitoring

Azure Monitor

Docker-based setup with Telegraf, InfluxDB, and
Grafana

This deployment scenario integrates Server with Telegraf, InfluxDB, and Grafana via docker-compose |.
This approach is a great fit when you want to maintain complete control over the entire environment,
you can't deploy in the cloud, or you just want to try things out. It can be also adapted to other
deployment orchestration tools based on Docker containers, such as Kubernetes.

’ S S O -

SERVER TELEGRAF INFLUXDB GRAFANA OPERATOR

.

Report ——— » Aggregate ——» Persist » Analyze

In this setup, Server sends metrics to Telegraf, which aggregates time during fixed-period time buckets.
After metrics are aggregated, they're sent to InfluxDB for storage. Finally, the operator can view and
analyze metrics in the Grafana dashboard by writing queries for InfluxDB.

https://docs.docker.com/compose/
https://docs.datadoghq.com/developers/dogstatsd/
https://github.com/statsd/statsd
https://www.influxdata.com/time-series-platform/telegraf/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.datadoghq.com/developers/dogstatsd/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/
https://grafana.com/
https://kubernetes.io/

Prerequisites

In order to complete this section, you'll need to have Docker with [docker-compose | installed. You'll also
need a PSPDFKit Server activation key or a trial license key; refer to the Product Activation guide.

Setting up

To get started, clone the repository with the configuration files: https://github.com/PSPDFKit/pspdfkit-

server-example-metrics. In the root of the repository, you'll find the following docker-compose.ym1 file:

version:

services:
grafana:
image:
ports:

0 J o U b W N B

environment:

depends _on:

volumes:
influxdb:
image:
telegraf:
image:
depends_on:

volumes:

db:
image:
environment:
POSTGRES_USER:
POSTGRES_PASSWORD:
POSTGRES_DB:
PGDATA:
volumes:
pspdfkit:
image:
environment:
STATSD HOST:
STATSD_ PORT:

ACTIVATION KEY:
DASHBOARD USERNAME:

https://docs.docker.com/compose/
https://docs.docker.com/engine/install/ubuntu/
https://pspdfkit.com/guides/server/deployment/product-activation/
https://github.com/PSPDFKit/pspdfkit-server-example-metrics
https://github.com/PSPDFKit/pspdfkit-server-example-metrics

DASHBOARD PASSWORD:

PGUSER:
PGPASSWORD:
PGDATABASE:
PGHOST:

PGPORT:

API_AUTH TOKEN:
SECRET_KEY BASE:
JWT_PUBLIC KEY: |

JWT_ ALGORITHM:
ports:

depends_on:

volumes: pgdata:

This configuration file defines all services required to deploy Server and observe metrics reported by it.

Remember to swap out the <vour acrivarion key> placeholder with the actual activation key of
PSPDFKit Server. Note that Server is configured to send metrics to Telegraf: srarsp_sosT points to

telegraf Service,and srtaTsp port is configured to use port 8125.

Inthe telegraf/ subdirectory, you'll find the configuration for the Telegraf agent, telegraf.conf :

[agent]
interval =

[[inputs.statsd]]
service address =

metric_separator =
datadog extensions =

templates = [

[[outputs.influxdb]]

16 urls = ["http://influxdb:8086"]
17 database =

Let’s go through the options defined here:

interval specifies how often Telegraf takes all the received data points and aggregates them
into metrics.

inputs.statsd.service address defines the address of the UDP listener. The port number here
must match the staTsp_porT configuration for Server.

inputs.statsd.metric_separator heedstobesetto . when used with PSPDFKit Server.

inputs.statsd.datadog extensions heedstobesetto true soO that metric tags sent by Server

are parsed correctly.

inputs.statsd.templates defines how names of metrics sent by Server are mapped to
Telegraf’'s metric representation. This needs to be set to the exact value shown in the
configuration file above.

outputs.influxdb IS the URL of the InfluxDB instance where data will be stored.

outputs.influxdb.database iSthe name of the database in InfluxDB where metrics will be saved.
You'll need to use the same name when querying data in Grafana.

The above is just an example configuration file, and it's by no means a complete configuration suitable
for production deployments; refer to the Telegraf documentation for all the available options.

Inthe grafana/ subdirectory, you'll find definitions of data sources, along with an example dashboard.
You can provide all this data through Grafana Ul; this is just an example to get you up and running
quickly. Refer to the Grafana documentation for more information.

Now when you run docker-compose up from the directory when the docker-compose.yml file is placed,
all the components will be started.

Viewing metrics

Head overto http://localhost:3000 inyour browser to access the Grafana dashboard using
admin/secret credentials to log in. Now open the PSPDFKit Server dashboard. You'll see a dashboard

like in the image below, but most likely with different data points.

https://docs.influxdata.com/telegraf/v1.15/administration/configuration/
https://grafana.com/docs/grafana/latest/

Note: If no data is shown in the dashboard, open the Server dashboard at

<SERVER_URL>/dashboard ,Upload a couple documents, and perform some operations on them.

The dashboard shows a few crucial Server metrics — you can see their definitions by selecting a panel
and choosing Edit. For a complete reference of available metrics, see this guide.

AWS CloudWatch

If you're deploying your services to AWS, chances are you're already monitoring them using AWS
CloudWatch. If you followed our AWS deployment guide and host Server on AWS ECS, system-level
metrics like CPU and memory utilization are automatically collected for you. This section shows how
you can integrate PSPDFKit Server with the CloudWatch Agent to export internal Server metrics to
CloudWatch.

https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/server-metrics
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://www.nutrient.io/guides/web/pspdfkit-server/deployment/aws/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-ECS-instancelevel.html

Prerequisites

This section assumes you followed the Server AWS deployment guide or have deployed PSPDFKit
Server to AWS ECS backed by an EC2 instance yourself.

Setting up

First, you'll need to install the CloudWatch agent on the host where it's reachable by PSPDFKit Server.

Refer to the CloudWatch agent installation guide for specific instructions.

The next step is agent configuration:

"metrics": {
"namespace" :
"metrics collected": {
"statsd": {
"service address":

1
2
3
4
5
6
7
8
)

=
o

This configuration specifies that the agent should start a StatsD-compatible listener on port 8125. In
addition, all metrics collected by the agent will be placed under the psepFritserver namespace. Save
the configuration in the cwagent.json file on the host where you installed the agent and run:

/opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl -a fetch—001:

&) Note: The command above requires root privileges.

You can see that the agent is up by running the following:

systemctl status amazon-cloudwatch-agent.service

https://www.nutrient.io/guides/web/pspdfkit-server/deployment/aws/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-commandline-fleet.html

The only thing that’s left is to configure PSPDFKit Server to send metrics to the agent. You'll need the IP
address or the DNS entry for the host — this depends on where you deployed the agent. Make sure
Server can reach the agent on port 8125 (e.g. if you deployed it to AWS EC2, configure the security
group to allow incoming UDP traffic on port 8125).

Now head to the ECS task definitions page and modify the task definition for PSPDFKit Server. Click on
the most recent revision, select Create new revision, and scroll down to edit the Server container. Set
the sTaTsp_HOsT environment variable to point to the CloudWatch agent’s IP address or DNS entry,
and set staTsp_port to point to 8125.

STATSD_HOST Value v <CW_AGENT_IP_OR_DNS>| o

STATSD_PORT Value v 8125 ©

Save the changes and create a new revision. Now update the ECS service that’s running the PSPDFKit
Server task and change the task definition revision to the one you just created. Then wait until the task
restarts.

Viewing metrics

You can now go to the AWS CloudWatch console to view the metrics exported by Server. (Note that it
takes a while until the agent sends the collected metrics upstream). Use this link to go straight to the

PSPDFKitServer namespace in the metrics browser:
https://console.aws.amazon.com/cloudwatch/home#metricsV2:graph=~
();namespace=~'PSPDFKitServer.

As an example, to view the HT TP response time metric, search for http_server req _end inthe search
box and tick all the checkboxes. You'll see a graph of HTTP timing metrics grouped by the HTTP method

and response status code.

https://console.aws.amazon.com/ecs/home#/taskDefinitions
https://console.aws.amazon.com/cloudwatch/home#metricsV2:graph=~();namespace=~'PSPDFKitServer
https://console.aws.amazon.com/cloudwatch/home#metricsV2:graph=~();namespace=~'PSPDFKitServer

The data points you'll see will most likely be different than what’s shown in the screenshot above.

&) Note: If there’s no data shown in the dashboard, open the Server dashboard at

<SERVER_URL>/dashboard , Upload a couple documents, and perform some operations on them.

You can use the CloudWatch console to browse the available metrics. For more advanced use, see the
CloudWatch search expressions and metric math guides. Check out the complete list of metrics

exported by PSPDFKit Server on the metrics reference page.

Google Cloud Monitoring

Google Cloud Monitoring (formerly known as Stackdriver) is a monitoring service provided by the
Google Cloud Platform. It’s a great choice when you deploy your services on the Google Kubernetes
Engine (GKE) stack, since it provides metrics for all the Kubernetes resources out of the box. To forward

metrics from PSPDFKit Server to Google Cloud Monitoring, you'll use Telegraf.

Prerequisites

To follow this section, make sure you've deployed PSPDFKit Server to GKE as outlined in our

deployment guide.

Setting up

To get started, first you need to expose the Telegraf agent configuration as a ConfigMap in the GKE

cluster. Save the following ConfigMap definition in the telegraf-config.yml file:

apiVersion:
kind:

metadata:
name:
data:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-search-expressions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/server-metrics
https://cloud.google.com/monitoring
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://kubernetes.io/
https://www.influxdata.com/time-series-platform/telegraf/
https://cloud.google.com/kubernetes-engine
https://www.nutrient.io/guides/web/pspdfkit-server/deployment/google-cloud-platform/
https://www.nutrient.io/guides/web/pspdfkit-server/deployment/google-cloud-platform/
https://kubernetes.io/docs/concepts/configuration/configmap/

This ConfigMap embeds the Telegraf configuration file directly. Let’s go through the options defined

here:

interval and flush interval specify how often the metrics are aggregated and how often
they’re pushed to Google Cloud. Make sure flush_interval isn’tlessthanthe interval ,and
that interval is setto atleast 60 seconds. This is because the Google Cloud Monitoring API

allows you to create, at most, one data point per minute.

inputs.statsd.service_address defines the address of the UDP listener. Use the port number
defined here when creating a Service for the Telegraf agents.

inputs.statsd.metric_separator heedstobesetto . when used with PSPDFKit Server.

inputs.statsd.datadog extensions heedstobesetto true soO that metric tags sent by Server

are parsed correctly.

inputs.statsd.templates defines how names of metrics sent by Server are mapped to
Telegraf’s metric representation. This needs to be set to the exact value shown in the
configuration file above.

outputs.stackdriver iS a configuration of the Google Cloud Monitoring output plugin. Make
sure to put your actual GCP project name here.

The above is just an example configuration file, and it's by no means a complete configuration suitable
for production deployments; refer to the Telegraf documentation for all the available options.

You can create the ConfigMap in the cluster by running:

[A

https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.influxdata.com/telegraf/v1.15/administration/configuration/

kubectl apply -f telegraf-config.yml

Now that the configuration is available, deploy Telegraf itself:

apiVersion:
kind:
metadata:
name:
spec:
template:
metadata:
labels:
app:
10 spec:
11 containers:

0 J o U b W N

o

12 - name:

13 image:

14 volumeMounts:
15 - name:

16 mountPath:
17 readOnly: true
18 volumes:

19 - name:

20 configMap:

21 name:

22 items:

23 - key:

24 path:
25 -

26 apiVersion:

27 kind:

28 metadata:

29 name:

30 spec:

31 clusterIP:

32 selector:

33 app:

34 ports:

35 - protocol:

36 port:

37 targetPort:

This YAML file defines the Telegraf [paemonset |, which deploys a single Telegraf agent to every node in
the GKE cluster, along with a headless Service that allows Server to reach Telegraf using a domain

name. Notice that you’re mounting the previously defined Telegraf configuration as a file in the Telegraf

container. Save that definition in telegraf.ymi and run:

-

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

kubectl apply -f telegraf.yml

The last thing you need to do is configure PSPDFKit Server to send metrics to Telegraf. Modify the
Server resource definition file by adding these two environment variables:

Make sure to recreate the Server deployment by running kubectl apply -£ on the file where it's
defined.

Viewing metrics

To view metrics, head over to Monitoring in the Google Cloud console. If you follow that link, you’ll land
on the Metrics Explorer page, where you can search for all the PSPDFKit Server metrics. Note that the
PSPDFKit Server metrics are available under the Global resource.

For example, search for pspdfkit/http_server/req end mean tO view the average HTTP response time
of PSPDFKit Server. Apply a filter to only view metrics with a standard group, and group them by the
HTTP method.

https://console.cloud.google.com/monitoring/metrics-explorer

The data points you'll see will most likely be different than what’s shown in the screenshot above.

&) Note: If there’s no data shown in the dashboard, open the Server dashboard at

<SERVER_URL>/dashboard , Upload a couple documents, and perform some operations on them.

You can now add the chart to the dashboard, or continue exploring available metrics. Learn more about
how to build an advanced monitoring solution on top of Google Cloud Monitoring by following the
relevant guides.

Azure Monitor

If you're already using tools from the Microsoft ecosystem and deploying your software to Azure, you
should consider sending metrics to Azure Monitor. As with other metrics aggregation services available
natively on cloud platforms, it provides a wide range of metrics for resources on the platform, and it can
also be used to store and visualize custom metrics from any application, including PSPDFKit Server.
You'll use Telegraf to export metrics from PSPDFKit Server to Azure Monitor.

https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/server-metrics
https://cloud.google.com/monitoring/docs
https://azure.microsoft.com/services/monitor/

Prerequisites

In order to follow this section, make sure you’ve deployed PSPDFKit Server to AKS.

Setting up

Sending metrics to Azure Monitor requires authentication — any service that wants to publish metrics
needs to have specific permissions. The easiest way to do this is to assign a built-in Monitoring Metrics
Publisher role to the managed identity sending metrics. However, at the moment of writing, Azure
doesn’t provide a native way to assign managed identities to Kubernetes Pods running on AKS. In order
to assign required permissions to pods running Telegraf agent, you'll deploy the AAD Pod Identity

operator (an open source project built by the Azure team) to bind managed identities to relevant pods.

Deploying the AAD pod identity operator

As a first step, you must grant the service principal or managed identity that runs your AKS cluster
nodes permission to assign identities to those nodes. Follow this document to find out if you're running
AKS nodes with service principal or managed identity, and if so, to learn how to obtain the service
principal or managed identity client ID.

After you get the ID, make sure to save itinthe CcLUSTER IDENTITY CLIENT ID environmentvariable.

Now, run the following commands:

SUBSCRIPTION ID=$(az account show --query id -o tsv
CLUSTER RESOURCE_GROUP_NAME=S (az aks show --resource-group pspdfkitresourcegror
CLUSTER RESOURCE_ GROUP= SUBSCRIPTION ID CLU

az role assignment create --role --assignee CL

az role assignment create --role —--assignee CLUS

& Note: If you get an error that says you have insufficient permissions, contact your Azure

Active Directory (Azure AD) administrator.

After the permissions have been assigned, you can deploy the operator. Run the following in the shell:

[W

https://azure.microsoft.com/services/kubernetes-service/
https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/overview
https://kubernetes.io/docs/concepts/workloads/pods/
https://github.com/Azure/aad-pod-identity
https://docs.microsoft.com/azure/active-directory/develop/app-objects-and-service-principals#service-principal-object
https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/overview
https://github.com/Azure/aad-pod-identity/blob/master/docs/readmes/README.role-assignment.md#obtaining-the-id-of-the-managed-identity--service-principal

kubectl apply -f https://raw. glthubusercontent com/Azure/aad-pod- 1dent1ty/

When you run kubectl get deployments.apps ,YyOU should see mic deployment up and running:

NAME READY UP-TO-DATE AVAILABLE AGE
mic 1/1 1 1 3h56m
pspdfkit 1/1 1 1 93m

Creating identity with permissions to publish metrics

Now you're going to create an identity with permissions to write metrics to Azure Monitor. You'll later
assign this to the pod running Telegraf agent.

First, create a new identity:

az identity create --name telegraf --resource-group CLUSTER_ RESOURCE_GRC(
TELEGRAF IDENTITY ID=$(az identity show --resource-group CLUSTER_RESOURCE_GR
TELEGRAF_ IDENTITY CLIENT ID=$(az identity show --resource-group CLUSTER_RESO!

Then assign it a Monitoring Metrics Publisher role:

CLUSTER ID=5(az aks show --resource-group pspdfkitresourcegroup --name psg
az role assignment create --role --assignee S$TE!

Note that the identity only has permission to write metrics in the scope of the AKS cluster.

Now that the identity is created, you need to let the AAD Pod Identity operator know that you want to
assign that identity to specific nodes in the cluster. You can do this by creating azurerdentity and

AzureIdentityBinding custom resources:

apiVersion:
kind:

metadata:

name:
spec:
type:

resourcelD:
clientID:

apiVersion:

kind:

metadata:
name:

spec:
azureldentity:
selector:

Copy the YAML definition above, and replace <TELEGRAF IDENTITY ID> and
<TELEGRAF IDENTITY CLIENT 1D> With the values of $tELEGRAF IDENTITY ID and
STELEGRAF_IDENTITY_ CLIENT_ID environment variables, respectively. This definition means that the
telegraf identity you created (azurerdentity: telegraf)should be assigned to any pod whose

aadpodidbinding label matches the value of telegraf (selector: telegraf).

Create the resource in the cluster by running kubectl apply -f telegraf-identity.yml .

Configuring Telegraf

Since the identity for Telegraf is ready, you can prepare its configuration. You'll provision the

configuration file in Kubernetes’(configMap |:

apiVersion:
kind:
metadata:

name:
data:

1
2
3
4
5
6
7
8

https://kubernetes.io/docs/concepts/configuration/configmap/

Replace the <cruster_1p> placeholder with the value of the scrusTer 1D environment variable and

save the configuration inthe telegraf-config.ymi file.
Let’s quickly discuss the configuration options:

interval and flush_interval specify how often the metrics are collected and how often
they’re written to Azure Monitor. Make sure flush_interval isn'tlessthanthe interval .

inputs.statsd.service_address defines the address of the UDP listener. Use the port number
defined here when creating a Service for the Telegraf agents.

inputs.statsd.metric_separator heedstobesetto . when used with PSPDFKit Server.

inputs.statsd.datadog_extensions needstobe setto true so that metric tags sent by Server

are parsed correctly.

inputs.statsd.templates defines how names of metrics sent by Server are mapped to
Telegraf’'s metric representation. This needs to be set to the exact value shown in the

configuration file above.

outputs.azure_monitor is a configuration for the Azure Monitor exporter. The resource_id is
the cluster ID you used when granting metric publishing privileges to the Telegraf identity.

The above is just an example configuration file, and it’s by no means a complete configuration suitable
for production deployments; refer to the Telegraf documentation for all the available options.

Create the configmMap in the cluster by running:

kubectl apply -f telegraf-config.yml

Deploying Telegraf and configuring PSPDFKIit Server

You can now deploy Telegraf to the cluster, instructing it to use the provisioned configuration. The

following file defines a [paemonset |and a headless Service for the Telegraf agents:

apiVersion:
kind:

metadata:

name:

spec:

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.influxdata.com/telegraf/v1.15/administration/configuration/
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

selector:
matchLabels:
app:
template:
metadata:
labels:
app:
aadpodidbinding:
spec:
containers:
— name:
image:
volumeMounts:
- name:
mountPath:
readOnly: true
volumes:
— name:
configMap:
name:
items:
- key:
path:
apiVersion:
kind:
metadata:
name:
spec:
clusterIP:
selector:
37 app:
ports:
39 - protocol:
40 port:
41 targetPort:

N R ——————————————

The bpaemonset will make sure there’s a single Telegraf agent available on each node in the cluster, and
the headless service allows communication with the agent using a domain name. Notice that
aadpodidbinding is setto telegraf ,so thatthe identity binding you created before gets applied and

the Telegraf agent will be granted permission to write metrics to Azure Monitor. Save the specification

above inthe telegraf.ymi file and run xubectl apply -f telegraf.yml to trigger deployment.

Finally, the last part is to configure PSPDFKit Server to start sending metrics to the Telegraf agent. Edit
the Server deployment file and add these two environment variables:

Update the Server deployment by running kubectl apply -£ on the deployment definition file.

Viewing metrics

In order to view metrics, go to Azure Monitor service in Azure portal and navigate to Metrics in the
sidebar. You'll be prompted to select a monitored resource — since you used the AKS cluster as the

resource for which the metrics are written, you need to find the cluster by typing its name in the search
field, select the checkbox, and click Apply.

In the Metric Namespace selection box, find pspdfkit/http_server and choose

req end 90 percentile forthe metrics. Pick Max as the aggregation. Now click Add filter at the top and
keep only those metrics for which the group dimensionis setto standard . Finally, click Apply
splitting and choose the Method field. The chart you see now shows the 90th percentile of Server’s
HTTP response time, and it's grouped by the HTTP method.

https://portal.azure.com/
https://portal.azure.com/#blade/Microsoft_Azure_Monitoring/AzureMonitoringBrowseBlade/metrics

The data points you'll see will most likely be different than what’s shown in the screenshot above.

&) Note: If there’s no data shown in the dashboard, open the Server dashboard at

<SERVER_URL>/dashboard ,Upload a couple documents, and perform some operations on them.

Now you can explore more PSPDFKit Server metrics. When you're satisfied with how the chart looks,
add it to the dashboard so that you can get back to it. You can learn more about building advanced

charts by following the Advanced features of Azure Metrics Explorer guide.

Was this helpful?

"‘. Y E S m

Questions? Contact us

https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/server-metrics
https://docs.microsoft.com/azure/azure-monitor/platform/metrics-charts
https://www.nutrient.io/company/contact/

