» SDK Low-Code Workflow DV

o o
AP Docs contacT sates il |
()

Web

Signature lifecycle

WEB > GUIDES PSPDFKIT SERVER = DIGITAL SIGNATURES = SIGNATURE LIFECYCLE

How to implement digital signatures in
PDFs

PSPDFKit Server has been deprecated and replaced by Document Engine. To migrate to Document
Engine and unlock advanced document processing capabilities, refer to our migration guide. Learn
more about these enhancements on our blog.

Under the hood, the process of signing a document via PSPDFKIit Server is divided into three phases:

1 PSPDFKit Server prepares the document for a signature, adding an invisible form field that will

contain the signature value.

2 PSPDFKIit Server then contacts an external signing service you're responsible for setting up,
which will provide a compliant signature value.

3 PSPDFKit Server applies the returned signature to the document and saves it, storing the final
file as an asset associated with the document and the used Instant layer.

This architecture ensures that PSPDFKit doesn’'t need access to the private key that ultimately will be
used to produce the signature value, leaving you complete freedom to choose which strategy to use to
manage its lifecycle and security.

The signing service

The signing service is a network service that you're responsible for maintaining and operati

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

It needs to expose a single HTTP endpoint of your choice that receives all the information required to
calculate a compliant digital signature, and it should return a DER PKCS#7 container that can be set as
a value of the digital signature field.

For example, say you want to sign a document with the ID my-document-id via the Server API:

POST http://localhost:5000/api/documents/my-document-id/sign
Authorization: Token token="<secret token>"

Content-Type: application/json

"signingToken" : "custom-token"

The request accepts an optional signingToken string parameter, which will be forwarded to the
signing service in the exact same shape.

You can use it to pass a token that can be used to verify the authenticity of the signing request or to
provide identity information about the user applying the signature.

The signing endpoint will receive a request with the following schema:

POST http://signing-server:6000/sign
Content-Type: application/json

"encoded contents" : "CkVudWllcmF0aW5nIG9iamVjdHM6IDEXLCBkb251LgpDb3VudGluzy
"digest" : "aab7fe5d814e7e8048275d19693435013727ee8002b85ba8edc29321fc2edfc9
"signing token" : "custom-token"

In the example above, we assume that the signing service can be accessed at http://signing-

server:6000/sign .
The endpoint will receive a JSON-encoded rost request containing:

The Base64-encoded contents of the file to sign. This represents the portion of the PDF
document covered by the digital signature, minus the byte range that will contain the signature
itself. Note that since it's Base64-encoded, you'll need to decode it before signing it.

The digest for the contents to be signed (with the hash calculated before the contents are
encoded to Base64). If your language and encryption libraries support it, you can perform the

signature operation using the hash as the signature contents. In such a case, make sure you

configure PSPDFKit Server to use at least sha256 as its hashing algorithm.

The signing token, forwarded from the previous step.
For more details, refer to our signing service reference implementation on GitHub.

We recommend setting up the signing service as a container on the same network as PSPDFKit Server

and without external network access to guarantee fast, consistent performance and better security.

Once the signing service is up and running, you can configure PSPDFKIit Server to use it by setting the
SIGNING SERVICE URL tO the signing service endpoint,e€.g. http://signing-service:6000/sign .FOr

more information on configuration and customization, refer to our configuration guide.

Applying a signature

To digitally sign a document, perform a call to the [psppFkit.Instance#signbocument | method. As its first
argument, during the signing preparation of the document for the PKCS#7 container, you can optionally
pass an object with a piaceholdersize property that can be used to override the default size that’s

reserved for the signature.

As a second argument, you can optionally specify an object with the signingToken string property that
was described in the previous subsection. Refer to the APl documentation for more details:

instance
.signDocument (

signingToken:

})
.then(() => {

console.log("

b
((error) => {
console.error ("

Y

, error);

Was this helpful?

.' YES m

https://www.nutrient.io/api/web/PSPDFKit.Instance.html#signDocument
https://github.com/PSPDFKit/pspdfkit-web-signing-service-example
https://www.nutrient.io/guides/server/configuration/overview/
https://www.nutrient.io/api/web/PSPDFKit.Instance.html#signDocument

Questions? Contact us

https://www.nutrient.io/company/contact/

