
DOCS CONTACT SALES

Web

PSPDFKit Server

Generate DOCX and PDF documents

PSPDFKit Server has been deprecated and replaced by . To migrate to Document

Engine and unlock advanced document processing capabilities, refer to our . Learn

more about these enhancements on our .

This guide will take you through the process of populating Office DOCX templates with data. The

resulting DOCX file can then optionally be converted into a PDF document.

Populating DOCX templates with data and converting DOCX files into PDF documents require

special licenses. Contact for more information.

Word templating consists of the following elements:

WEB GUIDES PSPDFKIT SERVER

Document Engine

migration guide

blog

Sales

General principles

A DOCX file that will be used as the template.1

A template model that contains the placeholder values to replace in the DOCX template.2

Configuration for the template/model.3

Template model
ASK AI

SDK Low-Code Workflow DWS API

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/contact-sales
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

The template model must contain:

PSPDFKit supports replacing placeholder text strings, automatic reflow, loops, and dynamic tables.

Consider the following DOCX content:

Use the following model:

The outcome in the output DOCX document will be:

Consider the following DOCX content:

A configuration containing both a start and end delimiter. The default delimeters are { and } ,

and both can be configured in the request.

1

At least one placeholder-value pair. The placeholder name must correspond to the placeholder

defined in the DOCX template.

2

Populating a document

Text replacement

Hello my name is {name}.
There is {more}.

1
2

"model": {
 "name": "Petey Eff",
 "more": "lorem ipsum dolor sit amet."
}

1
2
3
4

Hello my name is Petey Eff.
There is lorem ipsum dolor sit amet.

1
2

Loops

Here, items is the name of the loop, and name and price are placeholders for repetitive elements.

Consider the following model:

The outcome in the output DOCX document will be:

This example performs dynamic population with custom delimeters ({{ and }}) using a request to

the /api/process_office_template endpoint:

{ledger}:
{#items} {name} {price} {/items}

1
2

"model": {
 "ledger": "Tom's groceries",
 "items": [
 { "name": "A", "price": 10 },
 { "name": "B", "price": 15 }
]
}

1
2
3
4
5
6
7

Tom's groceries:
A 10
B 15

1
2
3

Request example with custom delimeters

curl -X POST http://localhost:5000/api/process_office_template \
 -H 'Authorization: Token token=<API token>' \
 -H 'content-type: multipart/form-data' \
 -F 'document=@/path/to/template.docx'
 -F 'model={
 "config": {
 "delimiter": {
 "start": "{{",
 "end": "}}"
 }
 },
 "model": {

1
2
3
4
5
6
7
8
9

10
11
12

CURL HTTP

https://www.nutrient.io/api/reference/document-engine/upstream/#tag/Document-Editing/operation/process-office-template

Was this helpful?

Questions?

 "placeholder": "replacement value",
 "loop-name": [
 {
 "placeholder-within-loop": "replacement value",
 "another-placeholder-within-loop": "replacement value 2"
 },
 {
 "placeholder-within-loop": "another replacement value",
 "another-placeholder-within-loop": "another replacement value 2"
 }
]
 }
 }' \
 --output result.docx

13
14
15
16
17
18
19
20
21
22
23
24
25
26

YES NO

Contact us

https://www.nutrient.io/company/contact/

