
DOCS CONTACT SALES

Web

Monitoring

Enable metrics export

PSPDFKit Server has been deprecated and replaced by . To migrate to Document

Engine and unlock advanced document processing capabilities, refer to our . Learn

more about these enhancements on our .

Similar to how it works with , Docker allows you to about running

containers, like CPU usage, memory consumption, block device IO, etc. AWS, Google Cloud Platform,

and Azure all offer solutions to collect these metrics from containers launched on their respective

infrastructures.

See the following:

Since version 2020.5.0, Server provides the capability to send internal metrics to any metrics engine

supporting the , which is an extension of the popular . Internal

metrics offer more fine-grained insights into Server performance and help to pinpoint specific issues.

Check out our section below on how to enable internal Server metrics when running

on-premises or in the cloud. The list of all exported metrics is available .

WEB GUIDES PSPDFKIT SERVER MONITORING

Document Engine

migration guide

blog

logs gather system-level metrics

Using Container Insights

Cloud Operations for GKE

Enable Azure Monitor for containers

DogStatsD protocol StatsD protocol

metrics integration

here

Metrics integration ASK AI

SDK Low-Code Workflow DWS API

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/overview
https://docs.docker.com/config/containers/runmetrics/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://cloud.google.com/kubernetes-engine-monitoring
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-onboard
https://docs.datadoghq.com/developers/dogstatsd/
https://github.com/statsd/statsd
https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/metrics-integration/
https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/server-metrics
https://docs.datadoghq.com/developers/dogstatsd/
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

PSPDFKit Server sends metrics using an open , which is an extension of the

popular protocol. Any metric collection engine that understands this protocol can ingest metrics

exported by Server — including , , and itself.

To enable exporting metrics, set the STATSD_HOST and STATSD_PORT configuration variables to point to

the hostname and port where the collection engine is running.

You can also define custom metric tags by setting the STATSD_CUSTOM_TAGS environment variable to a

comma-separated list of key-value pairs (with key and value separated by a =). For example, if you

want to tag metrics with a region and a role, you can set the environment variable to

region=eu,role=viewer .

This guide covers instructions on how to integrate Server metrics with various metric collection

systems, more specifically:

This deployment scenario integrates Server with , , and via docker-compose .

This approach is a great fit when you want to maintain complete control over the entire environment,

you can’t deploy in the cloud, or you just want to try things out. It can be also adapted to other

deployment orchestration tools based on Docker containers, such as .

In this setup, Server sends metrics to Telegraf, which aggregates time during fixed-period time buckets.

After metrics are aggregated, they’re sent to InfluxDB for storage. Finally, the operator can view and

analyze metrics in the Grafana dashboard by writing queries for InfluxDB.

DogStatsD protocol

StatsD

Telegraf AWS CloudWatch Agent DogStatsD

Docker-based setup with Telegraf, InfluxDB, and Grafana

AWS CloudWatch

Google Cloud Monitoring

Azure Monitor

Docker-based setup with Telegraf, InfluxDB, and

Grafana

Telegraf InfluxDB Grafana

Kubernetes

https://docs.docker.com/compose/
https://docs.datadoghq.com/developers/dogstatsd/
https://github.com/statsd/statsd
https://www.influxdata.com/time-series-platform/telegraf/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.datadoghq.com/developers/dogstatsd/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/
https://grafana.com/
https://kubernetes.io/

In order to complete this section, you’ll need to have with docker-compose installed. You’ll also

need a PSPDFKit Server activation key or a trial license key; refer to the guide.

To get started, clone the repository with the configuration files:

. In the root of the repository, you’ll find the following docker-compose.yml file:

Prerequisites

Docker

Product Activation

Setting up

https://github.com/PSPDFKit/pspdfkit-

server-example-metrics

version: "3.8"

services:
 grafana:
 image: grafana/grafana:7.1.5
 ports:
 - 3000:3000
 environment:
 - GF_SECURITY_ADMIN_PASSWORD=secret
 depends_on:
 - influxdb
 volumes:
 - ./grafana/provisioning/datasources:/etc/grafana/provisioning/datasource
 - ./grafana/provisioning/dashboards:/etc/grafana/provisioning/dashboards
 - ./grafana/dashboards:/var/lib/grafana/dashboards:ro
 influxdb:
 image: influxdb:1.8.2
 telegraf:
 image: telegraf:1.14.5-alpine
 depends_on:
 - influxdb
 volumes:
 - ./telegraf/telegraf.conf:/etc/telegraf/telegraf.conf:ro
 db:
 image: postgres:15
 environment:
 POSTGRES_USER: pspdfkit
 POSTGRES_PASSWORD: password
 POSTGRES_DB: pspdfkit
 PGDATA: /var/lib/postgresql/data/pgdata
 volumes:
 - pgdata:/var/lib/postgresql/data
 pspdfkit:
 image: pspdfkit/pspdfkit:2024.1.2
 environment:
 STATSD_HOST: telegraf
 STATSD_PORT: 8125

 ACTIVATION_KEY: <YOUR_ACTIVATION_KEY>
 DASHBOARD_USERNAME: dashboard

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

https://docs.docker.com/compose/
https://docs.docker.com/engine/install/ubuntu/
https://pspdfkit.com/guides/server/deployment/product-activation/
https://github.com/PSPDFKit/pspdfkit-server-example-metrics
https://github.com/PSPDFKit/pspdfkit-server-example-metrics

This configuration file defines all services required to deploy Server and observe metrics reported by it.

Remember to swap out the <YOUR_ACTIVATION_KEY> placeholder with the actual activation key of

PSPDFKit Server. Note that Server is configured to send metrics to Telegraf: STATSD_HOST points to

telegraf service, and STATSD_PORT is configured to use port 8125.

In the telegraf/ subdirectory, you’ll find the configuration for the Telegraf agent, telegraf.conf :

 DASHBOARD_PASSWORD: secret

 PGUSER: pspdfkit
 PGPASSWORD: password
 PGDATABASE: pspdfkit
 PGHOST: db
 PGPORT: 5432
 API_AUTH_TOKEN: secret
 SECRET_KEY_BASE: secret-key-base
 JWT_PUBLIC_KEY: |
 -----BEGIN PUBLIC KEY-----
 MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA2gzhmJ9TDanEzWdP1WG+
 0Ecwbe7f3bv6e5UUpvcT5q68IQJKP47AQdBAnSlFVi4X9SaurbWoXdS6jpmPpk24
 QvitzLNFphHdwjFBelTAOa6taZrSusoFvrtK9x5xsW4zzt/bkpUraNx82Z8MwLwr
 t6HlY7dgO9+xBAabj4t1d2t+0HS8O/ed3CB6T2lj6S8AbLDSEFc9ScO6Uc1XJlSo
 rgyJJSPCpNhSq3AubEZ1wMS1iEtgAzTPRDsQv50qWIbn634HLWxTP/UH6YNJBwzt
 3O6q29kTtjXlMGXCvin37PyX4Jy1IiPFwJm45aWJGKSfVGMDojTJbuUtM+8P9Rrn
 AwIDAQAB
 -----END PUBLIC KEY-----
 JWT_ALGORITHM: RS256
 ports:
 - 5000:5000
 depends_on:
 - db
 - telegraf

volumes: pgdata:

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

[agent]
 interval = "5s"

[[inputs.statsd]]
 service_address = ":8125"

 metric_separator = "."
 datadog_extensions = true

 templates = [
 "*.* measurement.field",
 "*.*.* measurement.measurement.field",
]

[[outputs.influxdb]]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Let’s go through the options defined here:

The above is just an example configuration file, and it’s by no means a complete configuration suitable

for production deployments; refer to the for all the available options.

In the grafana/ subdirectory, you’ll find definitions of data sources, along with an example dashboard.

You can provide all this data through Grafana UI; this is just an example to get you up and running

quickly. Refer to the for more information.

Now when you run docker-compose up from the directory when the docker-compose.yml file is placed,

all the components will be started.

Head over to http://localhost:3000 in your browser to access the Grafana dashboard using

admin/secret credentials to log in. Now open the PSPDFKit Server dashboard. You’ll see a dashboard

like in the image below, but most likely with different data points.

 urls = ["http://influxdb:8086"]
 database = "pspdfkit"

16
17

interval specifies how often Telegraf takes all the received data points and aggregates them

into metrics.

inputs.statsd.service_address defines the address of the UDP listener. The port number here

must match the STATSD_PORT configuration for Server.

inputs.statsd.metric_separator needs to be set to . when used with PSPDFKit Server.

inputs.statsd.datadog_extensions needs to be set to true so that metric tags sent by Server

are parsed correctly.

inputs.statsd.templates defines how names of metrics sent by Server are mapped to

Telegraf’s metric representation. This needs to be set to the exact value shown in the

configuration file above.

outputs.influxdb is the URL of the InfluxDB instance where data will be stored.

outputs.influxdb.database is the name of the database in InfluxDB where metrics will be saved.

You’ll need to use the same name when querying data in Grafana.

Telegraf documentation

Grafana documentation

Viewing metrics

https://docs.influxdata.com/telegraf/v1.15/administration/configuration/
https://grafana.com/docs/grafana/latest/

ℹ️ Note: If no data is shown in the dashboard, open the Server dashboard at

<SERVER_URL>/dashboard , upload a couple documents, and perform some operations on them.

The dashboard shows a few crucial Server metrics — you can see their definitions by selecting a panel

and choosing Edit. For a complete reference of available metrics, see .

If you’re deploying your services to AWS, chances are you’re already monitoring them using

. If you followed our and host Server on AWS ECS, system-level

metrics like CPU and memory utilization are automatically collected for you. This section shows how

you can integrate PSPDFKit Server with the to export internal Server metrics to

CloudWatch.

this guide

AWS CloudWatch

AWS

CloudWatch AWS deployment guide

CloudWatch Agent

https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/server-metrics
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://www.nutrient.io/guides/web/pspdfkit-server/deployment/aws/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-ECS-instancelevel.html

This section assumes you followed the or have deployed PSPDFKit

Server to AWS ECS backed by an EC2 instance yourself.

First, you’ll need to install the CloudWatch agent on the host where it’s reachable by PSPDFKit Server.

Refer to the for specific instructions.

The next step is agent configuration:

This configuration specifies that the agent should start a StatsD-compatible listener on port 8125. In

addition, all metrics collected by the agent will be placed under the PSPDFKitServer namespace. Save

the configuration in the cwagent.json file on the host where you installed the agent and run:

ℹ️ Note: The command above requires root privileges.

You can see that the agent is up by running the following:

Prerequisites

Server AWS deployment guide

Setting up

CloudWatch agent installation guide

{
 "metrics": {
 "namespace": "PSPDFKitServer",
 "metrics_collected": {
 "statsd": {
 "service_address": ":8125"
 }
 }
 }
}

1
2
3
4
5
6
7
8
9

10

/opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl -a fetch-config

systemctl status amazon-cloudwatch-agent.service

https://www.nutrient.io/guides/web/pspdfkit-server/deployment/aws/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-commandline-fleet.html

The only thing that’s left is to configure PSPDFKit Server to send metrics to the agent. You’ll need the IP

address or the DNS entry for the host — this depends on where you deployed the agent. Make sure

Server can reach the agent on port 8125 (e.g. if you deployed it to AWS EC2, configure the security

group to allow incoming UDP traffic on port 8125).

Now head to the page and modify the task definition for PSPDFKit Server. Click on

the most recent revision, select Create new revision, and scroll down to edit the Server container. Set

the STATSD_HOST environment variable to point to the CloudWatch agent’s IP address or DNS entry,

and set STATSD_PORT to point to 8125.

Save the changes and create a new revision. Now update the ECS service that’s running the PSPDFKit

Server task and change the task definition revision to the one you just created. Then wait until the task

restarts.

You can now go to the AWS CloudWatch console to view the metrics exported by Server. (Note that it

takes a while until the agent sends the collected metrics upstream). Use this link to go straight to the

PSPDFKitServer namespace in the metrics browser:

’.

As an example, to view the HTTP response time metric, search for http_server_req_end in the search

box and tick all the checkboxes. You’ll see a graph of HTTP timing metrics grouped by the HTTP method

and response status code.

ECS task definitions

Viewing metrics

https://console.aws.amazon.com/cloudwatch/home#metricsV2:graph=~

();namespace=~'PSPDFKitServer

https://console.aws.amazon.com/ecs/home#/taskDefinitions
https://console.aws.amazon.com/cloudwatch/home#metricsV2:graph=~();namespace=~'PSPDFKitServer
https://console.aws.amazon.com/cloudwatch/home#metricsV2:graph=~();namespace=~'PSPDFKitServer

The data points you’ll see will most likely be different than what’s shown in the screenshot above.

ℹ️ Note: If there’s no data shown in the dashboard, open the Server dashboard at

<SERVER_URL>/dashboard , upload a couple documents, and perform some operations on them.

You can use the CloudWatch console to browse the available metrics. For more advanced use, see the

CloudWatch and guides. Check out the complete list of metrics

exported by PSPDFKit Server on the .

 (formerly known as Stackdriver) is a monitoring service provided by the

Google Cloud Platform. It’s a great choice when you deploy your services on the

 (GKE) stack, since it provides metrics for all the resources out of the box. To forward

metrics from PSPDFKit Server to Google Cloud Monitoring, you’ll use .

To follow this section, make sure you’ve deployed PSPDFKit Server to as outlined in

.

To get started, first you need to expose the Telegraf agent configuration as a in the GKE

cluster. Save the following ConfigMap definition in the telegraf-config.yml file:

search expressions metric math

metrics reference page

Google Cloud Monitoring

Google Cloud Monitoring

Google Kubernetes

Engine Kubernetes

Telegraf

Prerequisites

GKE our

deployment guide

Setting up

ConfigMap

apiVersion: v1
kind: ConfigMap
metadata:
 name: telegraf-config
data:

1
2
3
4
5

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-search-expressions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/server-metrics
https://cloud.google.com/monitoring
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://kubernetes.io/
https://www.influxdata.com/time-series-platform/telegraf/
https://cloud.google.com/kubernetes-engine
https://www.nutrient.io/guides/web/pspdfkit-server/deployment/google-cloud-platform/
https://www.nutrient.io/guides/web/pspdfkit-server/deployment/google-cloud-platform/
https://kubernetes.io/docs/concepts/configuration/configmap/

This ConfigMap embeds the Telegraf configuration file directly. Let’s go through the options defined

here:

The above is just an example configuration file, and it’s by no means a complete configuration suitable

for production deployments; refer to the for all the available options.

You can create the ConfigMap in the cluster by running:

 telegraf.conf: |
 [agent]
 interval = "90s"
 flush_interval = "90s"

 [[inputs.statsd]]
 service_address = ":8125"

 metric_separator = "."
 datadog_extensions = true

 templates = [
 "*.* measurement.field",
 "*.*.* measurement.measurement.field",
]

 [[outputs.stackdriver]]
 project = "<GCP PROJECT ID>"
 namespace = "pspdfkit"

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

interval and flush_interval specify how often the metrics are aggregated and how often

they’re pushed to Google Cloud. Make sure flush_interval isn’t less than the interval , and

that interval is set to at least 60 seconds. This is because the Google Cloud Monitoring API

allows you to create, at most, one data point per minute.

inputs.statsd.service_address defines the address of the UDP listener. Use the port number

defined here when creating a for the Telegraf agents.Service

inputs.statsd.metric_separator needs to be set to . when used with PSPDFKit Server.

inputs.statsd.datadog_extensions needs to be set to true so that metric tags sent by Server

are parsed correctly.

inputs.statsd.templates defines how names of metrics sent by Server are mapped to

Telegraf’s metric representation. This needs to be set to the exact value shown in the

configuration file above.

outputs.stackdriver is a configuration of the Google Cloud Monitoring output plugin. Make

sure to put your actual GCP project name here.

Telegraf documentation

https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.influxdata.com/telegraf/v1.15/administration/configuration/

Now that the configuration is available, deploy Telegraf itself:

This YAML file defines the Telegraf DaemonSet , which deploys a single Telegraf agent to every node in

the GKE cluster, along with a that allows Server to reach Telegraf using a domain

name. Notice that you’re mounting the previously defined Telegraf configuration as a file in the Telegraf

container. Save that definition in telegraf.yml and run:

kubectl apply -f telegraf-config.yml

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: telegraf
spec:
 template:
 metadata:
 labels:
 app: telegraf
 spec:
 containers:
 - name: telegraf
 image: telegraf
 volumeMounts:
 - name: telegraf-config
 mountPath: /etc/telegraf/
 readOnly: true
 volumes:
 - name: telegraf-config
 configMap:
 name: telegraf-config
 items:
 - key: telegraf.conf
 path: telegraf.conf

apiVersion: v1
kind: Service
metadata:
 name: telegraf
spec:
 clusterIP: None
 selector:
 app: telegraf
 ports:
 - protocol: UDP
 port: 8125
 targetPort: 8125

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

headless Service

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

The last thing you need to do is configure PSPDFKit Server to send metrics to Telegraf. Modify the

Server resource definition file by adding these two environment variables:

Make sure to recreate the Server deployment by running kubectl apply -f on the file where it’s

defined.

To view metrics, head over to Monitoring in the . If you follow that link, you’ll land

on the Metrics Explorer page, where you can search for all the PSPDFKit Server metrics. Note that the

PSPDFKit Server metrics are available under the Global resource.

For example, search for pspdfkit/http_server/req_end_mean to view the average HTTP response time

of PSPDFKit Server. Apply a filter to only view metrics with a standard group, and group them by the

HTTP method.

kubectl apply -f telegraf.yml

env:
 ...
 - name: STATSD_HOST
 value: telegraf
 - name: STATSD_PORT
 value: "8125"

1
2
3
4
5
6

Viewing metrics

Google Cloud console

https://console.cloud.google.com/monitoring/metrics-explorer

The data points you’ll see will most likely be different than what’s shown in the screenshot above.

ℹ️ Note: If there’s no data shown in the dashboard, open the Server dashboard at

<SERVER_URL>/dashboard , upload a couple documents, and perform some operations on them.

You can now add the chart to the dashboard, or continue exploring . Learn more about

how to build an advanced monitoring solution on top of Google Cloud Monitoring by following the

.

If you’re already using tools from the Microsoft ecosystem and deploying your software to Azure, you

should consider sending metrics to . As with other metrics aggregation services available

natively on cloud platforms, it provides a wide range of metrics for resources on the platform, and it can

also be used to store and visualize custom metrics from any application, including PSPDFKit Server.

You’ll use Telegraf to export metrics from PSPDFKit Server to Azure Monitor.

available metrics

relevant guides

Azure Monitor

Azure Monitor

https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/server-metrics
https://cloud.google.com/monitoring/docs
https://azure.microsoft.com/services/monitor/

In order to follow this section, make sure you’ve deployed PSPDFKit Server to .

Sending metrics to Azure Monitor requires authentication — any service that wants to publish metrics

needs to have specific permissions. The easiest way to do this is to assign a built-in Monitoring Metrics

Publisher role to the sending metrics. However, at the moment of writing, Azure

doesn’t provide a native way to assign managed identities to running on AKS. In order

to assign required permissions to pods running Telegraf agent, you’ll deploy the

operator (an open source project built by the Azure team) to bind managed identities to relevant pods.

As a first step, you must grant the or that runs your AKS cluster

nodes permission to assign identities to those nodes. Follow to find out if you’re running

AKS nodes with service principal or managed identity, and if so, to learn how to obtain the service

principal or managed identity client ID.

After you get the ID, make sure to save it in the CLUSTER_IDENTITY_CLIENT_ID environment variable.

Now, run the following commands:

ℹ️ Note: If you get an error that says you have insufficient permissions, contact your Azure

Active Directory (Azure AD) administrator.

After the permissions have been assigned, you can deploy the operator. Run the following in the shell:

Prerequisites

AKS

Setting up

managed identity

Kubernetes Pods

AAD Pod Identity

Deploying the AAD pod identity operator

service principal managed identity

this document

SUBSCRIPTION_ID=$(az account show --query id -o tsv)
CLUSTER_RESOURCE_GROUP_NAME=$(az aks show --resource-group pspdfkitresourcegrou
CLUSTER_RESOURCE_GROUP="/subscriptions/${SUBSCRIPTION_ID}/resourcegroups/${CLUS
Assign permission to modify properties of the node VMs in the cluster.
az role assignment create --role "Virtual Machine Contributor" --assignee ${CLU
Assign permission to assign identities created in the cluster resource group
az role assignment create --role "Managed Identity Operator" --assignee ${CLUST

1
2
3
4
5
6
7

https://azure.microsoft.com/services/kubernetes-service/
https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/overview
https://kubernetes.io/docs/concepts/workloads/pods/
https://github.com/Azure/aad-pod-identity
https://docs.microsoft.com/azure/active-directory/develop/app-objects-and-service-principals#service-principal-object
https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/overview
https://github.com/Azure/aad-pod-identity/blob/master/docs/readmes/README.role-assignment.md#obtaining-the-id-of-the-managed-identity--service-principal

When you run kubectl get deployments.apps , you should see mic deployment up and running:

Now you’re going to create an identity with permissions to write metrics to Azure Monitor. You’ll later

assign this to the pod running Telegraf agent.

First, create a new identity:

Then assign it a Monitoring Metrics Publisher role:

Note that the identity only has permission to write metrics in the scope of the AKS cluster.

Now that the identity is created, you need to let the AAD Pod Identity operator know that you want to

assign that identity to specific nodes in the cluster. You can do this by creating AzureIdentity and

AzureIdentityBinding custom resources:

kubectl apply -f https://raw.githubusercontent.com/Azure/aad-pod-identity/maste
kubectl apply -f https://raw githubusercontent com/Azure/aad-pod-identity/maste

1
2

NAME READY UP-TO-DATE AVAILABLE AGE
mic 1/1 1 1 3h56m
pspdfkit 1/1 1 1 93m

1
2
3

Creating identity with permissions to publish metrics

az identity create --name telegraf --resource-group ${CLUSTER_RESOURCE_GROUP}
TELEGRAF_IDENTITY_ID=$(az identity show --resource-group ${CLUSTER_RESOURCE_GRO
TELEGRAF_IDENTITY_CLIENT_ID=$(az identity show --resource-group ${CLUSTER_RESOU

1
2
3

CLUSTER_ID=$(az aks show --resource-group pspdfkitresourcegroup --name pspdfkit
az role assignment create --role 'Monitoring Metrics Publisher' --assignee $TEL

1
2

apiVersion: aadpodidentity.k8s.io/v1
kind: AzureIdentity
metadata:
 name: telegraf
spec:
 type: 0

1
2
3
4
5
6

Copy the YAML definition above, and replace <TELEGRAF_IDENTITY_ID> and

<TELEGRAF_IDENTITY_CLIENT_ID> with the values of $TELEGRAF_IDENTITY_ID and

$TELEGRAF_IDENTITY_CLIENT_ID environment variables, respectively. This definition means that the

telegraf identity you created (azureIdentity: telegraf) should be assigned to any pod whose

aadpodidbinding label matches the value of telegraf (selector: telegraf).

Create the resource in the cluster by running kubectl apply -f telegraf-identity.yml .

Since the identity for Telegraf is ready, you can prepare its configuration. You’ll provision the

configuration file in Kubernetes’ ConfigMap :

 resourceID: <TELEGRAF_IDENTITY_ID>
 clientID: <TELEGRAF_IDENTITY_CLIENT_ID>

apiVersion: aadpodidentity.k8s.io/v1
kind: AzureIdentityBinding
metadata:
 name: telegraf-binding
spec:
 azureIdentity: telegraf
 selector: telegraf

7
8
9

10
11
12
13
14
15
16

Configuring Telegraf

apiVersion: v1
kind: ConfigMap
metadata:
 name: telegraf-config
data:
 telegraf.conf: |
 [agent]
 interval = "60s"
 flush_interval = "60s"

 [[inputs.statsd]]
 service_address = ":8125"

 percentiles = [90]

 metric_separator = "."
 datadog_extensions = true

 templates = [
 "*.* measurement.field",
 "*.*.* measurement.measurement.field",
]

 [[outputs.azure_monitor]]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

https://kubernetes.io/docs/concepts/configuration/configmap/

Replace the <CLUSTER_ID> placeholder with the value of the $CLUSTER_ID environment variable and

save the configuration in the telegraf-config.yml file.

Let’s quickly discuss the configuration options:

The above is just an example configuration file, and it’s by no means a complete configuration suitable

for production deployments; refer to the for all the available options.

Create the ConfigMap in the cluster by running:

You can now deploy Telegraf to the cluster, instructing it to use the provisioned configuration. The

following file defines a DaemonSet and a for the Telegraf agents:

 namespace_prefix = "pspdfkit/"
 resource_id = <CLUSTER_ID>

25
26

interval and flush_interval specify how often the metrics are collected and how often

they’re written to Azure Monitor. Make sure flush_interval isn’t less than the interval .

inputs.statsd.service_address defines the address of the UDP listener. Use the port number

defined here when creating a for the Telegraf agents.Service

inputs.statsd.metric_separator needs to be set to . when used with PSPDFKit Server.

inputs.statsd.datadog_extensions needs to be set to true so that metric tags sent by Server

are parsed correctly.

inputs.statsd.templates defines how names of metrics sent by Server are mapped to

Telegraf’s metric representation. This needs to be set to the exact value shown in the

configuration file above.

outputs.azure_monitor is a configuration for the Azure Monitor exporter. The resource_id is

the cluster ID you used when granting metric publishing privileges to the Telegraf identity.

Telegraf documentation

kubectl apply -f telegraf-config.yml

Deploying Telegraf and configuring PSPDFKit Server

headless Service

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: telegraf
spec:

1
2
3
4
5

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.influxdata.com/telegraf/v1.15/administration/configuration/
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

The DaemonSet will make sure there’s a single Telegraf agent available on each node in the cluster, and

the headless service allows communication with the agent using a domain name. Notice that

aadpodidbinding is set to telegraf , so that the identity binding you created before gets applied and

the Telegraf agent will be granted permission to write metrics to Azure Monitor. Save the specification

above in the telegraf.yml file and run kubectl apply -f telegraf.yml to trigger deployment.

Finally, the last part is to configure PSPDFKit Server to start sending metrics to the Telegraf agent. Edit

the Server deployment file and add these two environment variables:

 selector:
 matchLabels:
 app: telegraf
 template:
 metadata:
 labels:
 app: telegraf
 aadpodidbinding: telegraf
 spec:
 containers:
 - name: telegraf
 image: telegraf
 volumeMounts:
 - name: telegraf-config
 mountPath: /etc/telegraf/
 readOnly: true
 volumes:
 - name: telegraf-config
 configMap:
 name: telegraf-config
 items:
 - key: telegraf.conf
 path: telegraf.conf

apiVersion: v1
kind: Service
metadata:
 name: telegraf
spec:
 clusterIP: None
 selector:
 app: telegraf
 ports:
 - protocol: UDP
 port: 8125
 targetPort: 8125

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

env:
 ...
 - name: STATSD_HOST

1
2
3

Update the Server deployment by running kubectl apply -f on the deployment definition file.

In order to view metrics, go to Azure Monitor service in and navigate to in the

sidebar. You’ll be prompted to select a monitored resource — since you used the AKS cluster as the

resource for which the metrics are written, you need to find the cluster by typing its name in the search

field, select the checkbox, and click Apply.

In the Metric Namespace selection box, find pspdfkit/http_server and choose

req_end_90_percentile for the metrics. Pick Max as the aggregation. Now click Add filter at the top and

keep only those metrics for which the group dimension is set to Standard . Finally, click Apply

splitting and choose the Method field. The chart you see now shows the 90th percentile of Server’s

HTTP response time, and it’s grouped by the HTTP method.

 value: telegraf
 - name: STATSD_PORT
 value: "8125"

4
5
6

Viewing metrics

Azure portal Metrics

https://portal.azure.com/
https://portal.azure.com/#blade/Microsoft_Azure_Monitoring/AzureMonitoringBrowseBlade/metrics

The data points you’ll see will most likely be different than what’s shown in the screenshot above.

ℹ️ Note: If there’s no data shown in the dashboard, open the Server dashboard at

<SERVER_URL>/dashboard , upload a couple documents, and perform some operations on them.

Now you can explore more . When you’re satisfied with how the chart looks,

add it to the dashboard so that you can get back to it. You can learn more about building advanced

charts by following the guide.

Was this helpful?

Questions?

PSPDFKit Server metrics

Advanced features of Azure Metrics Explorer

YES NO

Contact us

https://www.nutrient.io/guides/web/pspdfkit-server/monitoring/server-metrics
https://docs.microsoft.com/azure/azure-monitor/platform/metrics-charts
https://www.nutrient.io/company/contact/

