
DOCS CONTACT SALES

Web

Configuration

Optimize asset storage for better PDF

management

PSPDFKit Server has been deprecated and replaced by . To migrate to Document

Engine and unlock advanced document processing capabilities, refer to our . Learn

more about these enhancements on our .

PSPDFKit Server supports multiple storage backends for PDFs and other assets, as detailed below.

By default, PSPDFKit Server stores assets as Binary Large OBjects (BLOBs) in the database. If you have

individual PDFs that are bigger than 1 GB in size, we recommend using .

Set ASSET_STORAGE_BACKEND to built-in to use the built-in asset storage.

PSPDFKit Server can also store your assets in any -compatible object storage service.

WEB GUIDES PSPDFKIT SERVER CONFIGURATION

Document Engine

migration guide

blog

Built-in asset storage

S3-compatible object storage

S3-compatible object storage

Amazon S3

Configuration
ASK AI

SDK Low-Code Workflow DWS API

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://aws.amazon.com/s3
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Set ASSET_STORAGE_BACKEND to S3 . Other configuration options depend on whether you’re using AWS

S3 or another S3-compatible storage provider.

When running on S3, you must set the ASSET_STORAGE_S3_BUCKET and ASSET_STORAGE_S3_REGION

configuration options to configure the bucket name and region.

If you’re running on AWS, Server will try to resolve access credentials with the following precedence:

We recommend using ECS Task Role or EC2 Instance Role, as they don’t require you to distribute

credentials to the Server container via environment variables.

If you’re not running on AWS, you must always set ASSET_STORAGE_S3_ACCESS_KEY_ID and

ASSET_STORAGE_S3_SECRET_ACCESS_KEY .

When using an object storage provider other than , you must always set

ASSET_STORAGE_S3_ACCESS_KEY_ID and ASSET_STORAGE_S3_SECRET_ACCESS_KEY . In addition, you can

configure the following options:

For more details about using as the storage backend, take a look at the

.

If you’re using AWS S3, the IAM identity used by PSPDFKit Server needs the following permissions:

AWS S3

ASSET_STORAGE_S3_ACCESS_KEY_ID and ASSET_STORAGE_S3_SECRET_ACCESS_KEY configuration

options

ECS Task Role

EC2 Instance Role

Other S3-compatible storage providers

Amazon S3

ASSET_STORAGE_S3_HOST — Host name of the storage service.

ASSET_STORAGE_S3_PORT — Port used to access the storage service. The default port is 443 .

ASSET_STORAGE_S3_SCHEME — A URL scheme used when accessing the service, either http://

or https:// . The default is https:// .

Google Cloud Storage Google

Cloud Storage interoperability guide

Bucket policy

s3:ListBucket on the configured bucket

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://aws.amazon.com/s3
https://cloud.google.com/storage/
https://cloud.google.com/storage/docs/interoperability
https://cloud.google.com/storage/docs/interoperability

Note that all operations on the S3 bucket have a timeout of 30 seconds.

The choice of storage backend depends on the PDF dataset that will power your application, and it

impacts the general performance of PSPDFKit Server.

If you have a relatively stable number of PDF files (i.e. an amount that only changes a few times a month)

with a size of lower than 5 MB each, you can safely use the built-in storage, with the main advantages

being that:

For larger and more frequently changing files, we recommend using the S3-compatible asset storage

backend, which provides more efficient support for concurrent uploads and downloads.

Using the S3-compatible backend means you need a separate backup routine, but you should consider

that:

If you already have a storage solution for PDF files in your infrastructure, PSPDFKit Server can integrate

with it as long as the PDF files can be accessed via an HTTP endpoint. When integrating PSPDFKit

s3:PutObject on all objects in the bucket (<bucket-arn>/*)

s3:GetObjectAcl on all objects in the bucket (<bucket-arn>/*)

s3:GetObject on all objects in the bucket (<bucket-arn>/*)

s3:DeleteObject on all objects in the bucket (<bucket-arn>/*)

Timeouts

Which storage backend should I use?

You don’t have to worry about another piece of infrastructure.

Backing up the PSPDFKit Server PostgreSQL instance will also back up your assets.

As PSPDFKit Server stores files by their SHA checksums, most of the time, a daily, incremental

backup will suffice.

You should schedule the asset storage backup right after the PostgreSQL database backup to

avoid data drifting between the two.

Serving files from existing storage in your

infrastructure

Server and the file storage, you’ll need to .

All PDF URLs should be considered permalinks, as PSPDFKit will always fetch the file when needed

(keeping only a local cached copy that can expire at any time).

Never accept arbitrary user input as a URL for a PDF. Malicious users might leverage this to make the

server perform a request on their behalf. This kind of attack, known as Server-Side Request Forgery

(SSRF), can be used to interact with services that assume the local network is secure, e.g. cloud

automation infrastructure.

To achieve the best possible performance, ensure PSPDFKit Server instances and the file store sit in

the same network (physical or virtual). This minimizes latency and maximizes download speed.

As of version 2019.4, it’s possible to perform a document editing operation on a document with a

remote URL, but the resulting PDF file will need to be stored with any of the supported storage

strategies. If you need to copy the transformed file back to the file store, you’ll need to do that manually

by .

If your file store requires authentication, we recommend introducing an internal proxy. When adding a

document with a URL, the URL would point to the proxy endpoint, where your custom logic would be

able to support the required authentication options and redirect to the file store URL of the PDF file. For

more information and some sample code, visit the .

Our recommended solution when using an S3-compatible object storage in production is to use

in development, in order to get closer to dev/prod parity.

To run the MinIO Docker container, run the following:

After running these commands, you should see the AccessKey and SecretKey printed out in the

terminal, which you can use to access the MinIO web interface at http://localhost:9000/minio .

You can now configure docker-compose.yml , like this:

add documents from a URL

fetching the transformed file first

relevant guide article

MinIO

MinIO

docker pull minio/minio
docker run -p 9000:9000 minio/minio server /export

1
2

https://www.nutrient.io/guides/web/pspdfkit-server/server-api/documents/#adding-a-document-from-a-url
https://www.nutrient.io/guides/web/pspdfkit-server/server-api/documents/#fetching-a-document-s-pdf-file
https://www.nutrient.io/guides/web/pspdfkit-server/migrate-existing-documents/#accessing-your-external-storage-with-credentials-or-tokens
https://www.minio.io/

MinIO supports emulating different regions. It defaults to us-east-1 . If you’ve changed your MinIO

configuration to a different region, make sure to set ASSET_STORAGE_S3_REGION accordingly.

It’s possible to migrate from one storage backend to another one by executing the migration command

as described below. To prevent data loss, a migration doesn’t delete files from the original storage

backend.

Asset storage backend migrations are incremental. You can interrupt the migration process at any time

and resume it later on. This is useful when you have many documents and you’d like to perform the

migration only during the time of low load on your system. You can perform the migration while

PSPDFKit Server is running.

Before you start the migration process, make sure to set the ENABLE_ASSET_STORAGE_FALLBACK

configuration option to true . This will allow PSPDFKit Server to serve assets that haven’t yet been

migrated from the old storage backend. Remember to set it back to false when you’ve finished

migrating all the documents, as it introduces a slight decrease in performance of fetching the assets.

At any point, you can inspect how many documents are stored in each asset storage backend from the

Storage tab in the .

To migrate from the built-in asset storage to S3, follow these steps:

environment:
ASSET_STORAGE_BACKEND: S3
ASSET_STORAGE_S3_BUCKET: <minio bucket name>
ASSET_STORAGE_S3_ACCESS_KEY_ID: <minio access key>
ASSET_STORAGE_S3_SECRET_ACCESS_KEY: <minio secret access key>
ASSET_STORAGE_S3_SCHEME: http://
ASSET_STORAGE_S3_HOST: pssync_minio
ASSET_STORAGE_S3_PORT: 9000

1
2
3
4
5
6
7
8

Migration between asset storage options

PSPDFKit Server dashboard

Migrating to S3 from built-in storage

Set the ENABLE_ASSET_STORAGE_FALLBACK configuration option to true .1

Set the ASSET_STORAGE_BACKEND configuration option to s3 and configure

.

2 the rest of the S3

options

Run the migration script by executing the pspdfkit assets:migrate:from-built-in-to-s3

command in the PSPDFKit Server container.

3

https://www.nutrient.io/guides/web/pspdfkit-server/dashboard/

To migrate from the S3 asset storage to the built-in storage, follow these steps:

Was this helpful?

If you use docker-compose, run the following command in the directory where you have your

docker-compose.yml file: docker-compose run pspdfkit pspdfkit assets:migrate:from-built-in-

to-s3 .

If you don’t use docker-compose, first find the name of the PSPDFKit Server container using

docker ps -a . This will list all running containers and their names. Then, run the following

command, replacing <container name> with the actual PSPDFKit Server container name:

docker exec <container name> pspdfkit assets:migrate:from-built-in-to-s3 .

When all your documents have been migrated, set the ENABLE_ASSET_STORAGE_FALLBACK option

back to false .

4

Migrating to built-in storage from S3

Set the ENABLE_ASSET_STORAGE_FALLBACK configuration option to true .1

Set the ASSET_STORAGE_BACKEND configuration option to built-in . Do not remove any of the S3

configuration options.

2

Run the migration script by executing the pspdfkit assets:migrate:from-s3-to-built-in

command in the PSPDFKit Server container.

3

If you use docker-compose, run the following command in the directory where you have your

docker-compose.yml file: docker-compose run pspdfkit pspdfkit assets:migrate:from-s3-to-

built-in .

If you don’t use docker-compose, first find the name of the PSPDFKit Server container using

docker ps -a . This will list all running containers and their names. Then, run the following

command, replacing <container name> with the actual PSPDFKit Server container name:

docker exec <container name> pspdfkit assets:migrate:from-s3-to-built-in .

When all your documents have been migrated, set the ENABLE_ASSET_STORAGE_FALLBACK option

back to false and remove all the S3 configuration options.

4

Questions?

YES NO

Contact us

https://www.nutrient.io/company/contact/

