
DOCS CONTACT SALES

Web

Configuration

Configuring custom fonts for optimal PDF

rendering

PSPDFKit Server has been deprecated and replaced by . To migrate to Document

Engine and unlock advanced document processing capabilities, refer to our . Learn

more about these enhancements on our .

PDF files should render consistently across different PDF viewers. This consistency is possible because

a PDF file can embed the fonts required for rendering.

However, in some cases — due to file size or other considerations — PDFs don’t embed fonts. When this

happens, the PDF viewer relies on system fonts, which may cause rendering issues if the required fonts

are unavailable.

Embedding fonts in PDFs is the best way to ensure accurate rendering, but this isn’t always possible,

especially when working with third-party PDFs. Custom font path support addresses this issue.

A font that includes all characters is usually more than 200 MB in size, which is difficult for a web

browser to render. So, to render fonts effectively (and to ensure this works in older browsers), a server is

necessary. That’s why we built custom font path support into PSPDFKit Server.

You can expose a directory of fonts from the host machine to the Docker container by adding the

following to your docker-compose.yml file:

WEB GUIDES PSPDFKIT SERVER CONFIGURATION

Document Engine

migration guide

blog

pspdfkit:
 volumes:

1
2

ASK AI

SDK Low-Code Workflow DWS API

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/web/
https://www.nutrient.io/guides/document-engine/
https://www.nutrient.io/guides/document-engine/upgrade/
https://www.nutrient.io/blog/document-engine-intro
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Note that after you add the fonts, you might still see PDFs rendered with an incorrect font in the web

viewer. This is because there are multiple layers of caching involved, and you’re still seeing the old

rendered page. To solve this, follow these steps:

The font directory can be any directory that’s accessible to your app, and all .ttf , .ttc , and .otf

files will be added to the font list of PSPDFKit.

Microsoft core fonts are widely used on the web and in PDFs. Adding them as custom fonts improves

document conversion and rendering accuracy. Nutrient doesn’t include these fonts because Microsoft

no longer provides them directly, and redistribution is prohibited by . To use these fonts,

download them from and add them as custom fonts.

To use emojis in your project, import the . Currently, this is

the only supported font for displaying emojis.

Sometimes, PSPDFKit Server doesn’t have access to the font required to perform a conversion or

render an annotation either as part of the default container fonts or in the fonts directory mounted at

/custom-fonts , as described above.

 - /font-directory-path-on-the-host:/custom-fonts3

Clear the browser cache — This clears rendering artifacts cached by the browser.1

Restart PSPDFKit Server — This clears the in-memory server cache for rendered pages.2

Only if you use Redis — Delete the keys, starting with the PSPDFKit-TileCache- and PSPDFKit-

PageCache- prefixes, to remove all rendered artifacts cached by PSPDFKit Server. Note that

there may be considerable performance implications in the case of high-volume deployments

(since all the previously cached pages will need to be rerendered by PSPDFKit Server), in which

case, you’ll need to apply Redis eviction policies that will remove the keys from the cache

gradually.

3

Microsoft core fonts

license

SourceForge

Using emojis

Windows-compatible Noto Color Emoji font

Font substitutions

http://corefonts.sourceforge.net/eula.htm
https://sourceforge.net/projects/corefonts/files/the%20fonts/final/
https://github.com/googlefonts/noto-emoji/blob/main/fonts/NotoColorEmoji_WindowsCompatible.ttf

In these cases, it’s necessary to specify alternative fonts that can be used in place of the unavailable

fonts. To specify these substitute fonts, create a font-substitutions.json file and mount it on the

PSPDFKit Server container:

The schema for the font-substitutions.json file is as follows (TypeScript is used for this definition):

Example font-substitions.json file:

pspdfkit:
 volumes:
 - /path-to-font-substitutions-json-on-host:/font-substitutions.json

1
2
3

type FontSubstitutions = {
 fontSubstitutions: FontSubstitution[];
};

type FontSubstitution = {
 // Note that font family name replacements are made based upon pattern matchi
 // allowing for a font family name to be replaced with a different name.
 // Patterns are matched using the following rules:
 // - `*` matches multiple characters
 // - `?` matches a single character
 pattern: string;

 // The font that should be used as a replacement
 // when any font matching the given pattern is unavailable.
 target: string;
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

{
 "fontSubstitutions": [
 {
 "pattern": "Roboto-*",
 "target": "Courier New"
 },
 {
 "pattern": "Calibri",
 "target": "Caladea"
 }
]
}

1
2
3
4
5
6
7
8
9

10
11
12

Case-insensitive — The pattern and target names are case-insensitive.

Ordering matters — As names could match multiple patterns, it’s important to note that the order of

substitutions in the fontSubstitutions array matters. Specifically, the font substitutions are processed

from top down.

For example, consider the following list of font substitutions:

If PSPDFKit Server has to convert a document with Roboto-MediumItalic font and the Roboto-

MediumItalic font is unavailable, it’ll use the Courier New font as a substitute instead (provided

Courier New is available), since Roboto-* is the first match for Roboto-MediumItalic on the list.

The font substitutions specified using font-substitutions.json will be applied where necessary

(conversions, rendering annotations, etc.) in the context of every document PSPDFKit Server

processes.

To create font substitutions that are scoped to a specific document and layer, see the

.

Note that any substitutions for a document layer that are specified using the will

be merged with the substitutions specified in font-substitutions.json before being applied.

If there are conflicts in the exact match pattern s, then the substitutions that are specific to the

document or layer will override the substitutions from font-substitutions.json . For example, if both

the font-substitutions.json file and the Font Substitutions API are used to specify targets for the

Notes on font substitutions

{
 "fontSubstitutions": [
 {
 "pattern": "Roboto-*",
 "target": "Courier New"
 },
 {
 "pattern": "Roboto-Medium",
 "target": "Menlo"
 },
 {
 "pattern": "Roboto-Medium*",
 "target": "Consolas"
 }
]
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

API Reference for

the font substitutions endpoint

Font Substitutions API

https://www.nutrient.io/api/reference/server/upstream/#tag/Fonts
https://www.nutrient.io/api/reference/server/upstream/#tag/Fonts
https://www.nutrient.io/api/reference/server/upstream/#tag/Fonts

Roboto-Medium* pattern, then the target set through the API will override the target set in the font-

substitutions.json file.

Was this helpful?

Questions?

YES NO

Contact us

https://www.nutrient.io/company/contact/

