
DOCS CONTACT SALES

UWP

Save

Saving annotations to an external source in

UWP

Using export and import functionality provided by Nutrient UWP SDK, you can export any changes

made to annotations to an external source of your choice, and then import them when you open the

document again to restore the changes.

This approach allows you to save on bandwidth and space, as you won’t need to export the entire

document whenever there are any modifications. Rather, you only send the annotation information

whenever necessary, retaining the same base file.

To enable this type of setup, you can use either or as the export format, depending

on your needs. Both of these can be converted into strings for easy storage on whichever external

source you choose. This guide will cover files. If you want to use stringified data directly, refer to our

.

In this example, you’ll save the annotation data to a file with the xfdf extension. This file can later be

used to import the XFDF data back.

There are a number of different possibilities when creating and writing to files in UWP. Here, you’ll create

a file in the application’s LocalFolder :

WINDOWS GUIDES ANNOTATIONS SAVE

Instant JSON XFDF

saving to a database guide

Exporting and importing XFDF from a file

var xfdfFile = await ApplicationData.Current.LocalFolder.CreateFileAsync("annotat
ASK AI

SDK Low-Code Workflow DWS API

https://www.nutrient.io/contact-sales?=sdk
https://docs.microsoft.com/en-us/uwp/api/windows.storage.applicationdata.localfolder
https://www.nutrient.io/guides/windows/
https://www.nutrient.io/guides/windows/
https://www.nutrient.io/guides/windows/importing-exporting/instant-json/
https://www.nutrient.io/guides/windows/importing-exporting/xfdf-support/
https://www.nutrient.io/guides/windows/annotations/import-and-export/database/
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Then, open a StorageStreamTransaction and pass the stream to a DataWriter . The DataWriter is

used by Nutrient’s Document to write into whichever stream type you chose to use, giving you a great

deal of freedom if your needs go against simple files, or if you’d rather create and write into your file in

some other way:

Note that, in this case, you must call both StoreAsync and CommitAsync for changes to be saved. This

could change, depending on your use case. The important thing is that the stream is committed with

the exported XFDF data.

To import, call Document.ImportXfdfFileAsync , passing in the relevant .xfdf file. In this example, you’d

do this like so:

And finally, call the following:

For Instant JSON, our SDK outputs a JsonObject . The storage of this data into a file is handled by the

user however they deem fit. In this example, you’ll convert the JsonObject into a string and add it to

a json file, similar to how it’s done in the section above. You’ll use the

Document.ExportInstantJsonAsync method:

using (var dataWriter = new DataWriter(await xfdfFile.OpenAsync(FileAccessMode
{
 await PDFView.Document.ExportXfdfToDataWriterAsync(dataWriter);
 await dataWriter.StoreAsync();
}

1
2
3
4
5

var importedXfdfFile = await StorageFile.GetFileFromApplicationUriAsync(new Uri

// or

var importedXfdfFile = await ApplicationData.Current.LocalFolder.GetFileAsync(

1
2
3
4
5

await PDFView.Document.ImportXfdfFileAsync(importedXfdfFile);

Exporting and importing using Instant JSON

https://docs.microsoft.com/en-us/uwp/api/windows.storage.streams.datawriter
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Pdf.Document.html
https://docs.microsoft.com/en-us/uwp/api/windows.data.json.jsonobject
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Pdf.Document.html#PSPDFKit_Pdf_Document_ExportInstantJsonAsync

Then, you can import it like so:

For more information on Instant JSON and its properties and uses, refer to our .

Was this helpful?

Questions?

var jsonFile = await ApplicationData.Current.LocalFolder.CreateFileAsync("annot

using (var dataWriter = new DataWriter(await jsonFile.OpenAsync(FileAccessMode
{
 var instantJsonObject = await PDFView.Document.ExportInstantJsonAsync();
 dataWriter.WriteString(instantJsonObject.Stringify());

1
2
3
4
5
6

var file = await ApplicationData.Current.LocalFolder.GetFileAsync("annotationda
await PDFView.Document.ImportInstantJsonAsync(JsonObject.Parse(await FileIO.Rea

1
2

feature-specific guide

YES NO

Contact us

https://www.nutrient.io/guides/windows/importing-exporting/instant-json/
https://www.nutrient.io/company/contact/

