» SDK Low-Code Workflow DV

o o
AP Docs contacT sates il |
()

UWP

Save

WINDOWS = GUIDES = ANNOTATIONS = SAVE

Saving annotations to an external source in
UWP

Using export and import functionality provided by Nutrient UWP SDK, you can export any changes
made to annotations to an external source of your choice, and then import them when you open the
document again to restore the changes.

This approach allows you to save on bandwidth and space, as you won'’t need to export the entire
document whenever there are any modifications. Rather, you only send the annotation information

whenever necessary, retaining the same base file.

To enable this type of setup, you can use either Instant JSON or XFDF as the export format, depending
on your needs. Both of these can be converted into strings for easy storage on whichever external
source you choose. This guide will cover files. If you want to use stringified data directly, refer to our
saving to a database guide.

Exporting and importing XFDF from a file

In this example, you'll save the annotation data to a file with the xfdf extension. This file can later be
used to import the XFDF data back.

There are a number of different possibilities when creating and writing to files in UWP. Here, you'll create

afile in the application’s [LocalFolder |

xfdfFile = ApplicationData.Current.LocalFolder.CreateFileAsync

https://www.nutrient.io/contact-sales?=sdk
https://docs.microsoft.com/en-us/uwp/api/windows.storage.applicationdata.localfolder
https://www.nutrient.io/guides/windows/
https://www.nutrient.io/guides/windows/
https://www.nutrient.io/guides/windows/importing-exporting/instant-json/
https://www.nutrient.io/guides/windows/importing-exporting/xfdf-support/
https://www.nutrient.io/guides/windows/annotations/import-and-export/database/
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Then,open a storagestreamTransaction and pass the stream to a(patawriter). The bpatawriter IS
used by Nutrient’s [pocument | to write into whichever stream type you chose to use, giving you a great
deal of freedom if your needs go against simple files, or if you'd rather create and write into your file in

some other way:

dataWriter = DataWriter (xfdfFile.OpenAsync (FileAccess

PDFView.Document .ExportXfdfToDataWriterAsync (dataWriter);
dataWriter.StoreAsync();

Note that, in this case, you must call both storeasync and commitasync for changes to be saved. This
could change, depending on your use case. The important thing is that the stream is committed with
the exported XFDF data.

To import, call pocument.ImportxfdfFileAsync , passingintherelevant .xfdaf file. In this example, you'd

do this like so:

importedXfdfFile StorageFile.GetFileFromApplicationUriAsync (

importedXfdfFile ApplicationData.Current.LocalFolder.GetFileAsync (

And finally, call the following:

PDFView.Document.ImportXfdfFileAsync (importedXfdfFile);

Exporting and importing using Instant JSON

For Instant JSON, our SDK outputs a(gsonobject). The storage of this data into a file is handled by the
user however they deem fit. In this example, you'll convert the Jsonobject intoa string andadditto
a json file, similar to how it's done in the section above. You'll use the

Document .ExportInstantJsonAsync method:

https://docs.microsoft.com/en-us/uwp/api/windows.storage.streams.datawriter
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Pdf.Document.html
https://docs.microsoft.com/en-us/uwp/api/windows.data.json.jsonobject
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Pdf.Document.html#PSPDFKit_Pdf_Document_ExportInstantJsonAsync

var jsonFile = ApplicationData.Current.LocalFolder.CreateFileAsync (

(var dataWriter = DataWriter (jsonFile.OpenAsync (FileAccessMode

var instantJdsonObject = PDFView.Document.ExportInstantdsonAsync();
dataWriter.WriteString(instantJdsonObject.Stringify());

Then, you can import it like so:

var file = ApplicationData.Current.LocalFolder.GetFileAsync (

PDFView.Document.ImportInstantJsonAsync (JsonObject.Parse(FileIO.Re

For more information on Instant JSON and its properties and uses, refer to our feature-specific guide.

Was this helpful?

.'. Y ES m

Questions? Contact us

https://www.nutrient.io/guides/windows/importing-exporting/instant-json/
https://www.nutrient.io/company/contact/

