Low-Code Workflow

o o
AP Docs contacT sates il |
()

UWP

Search

WINDOWS = GUIDES = SEARCH

Indexed full-text PDF search in UWP

Nutrient supports fast and efficient full-text search in PDF documents through

PSPDFKit.Search.Library). This document describes how to get started.

Getting started

To start indexing, create a(Library) and give it a name. You can then add folders that contain PDF files

to this named library. The [Library |will index all the PDFs in those folders.

Here’s a simple example of how to create or open a library and start indexing PDFs in a directory:

// Opening a library creates one if it doesn't already exist.
var library = Library.OpenLibraryAsync ()

// Find a folder containing PDFs.

var folderPicker = Windows.Storage.Pickers.FolderPicker();
folderPicker.SuggestedStartLocation = Windows.Storage.Pickers.PickerLocationId
folderPicker.FileTypeFilter.Add ()

1
2
3
4
5
6
7
8

o

Windows.Storage.StorageFolder folder = folderPicker.PickSingleFolderAsyn
10 (folder !=)

11 {

12 // Queue up the PDFs in the folder for indexing.

13 library.EnqueueDocumentsInFolderAsync(folder);

14

The documents will now be indexed in the background. As;<A|

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html
https://www.nutrient.io/guides/windows/
https://www.nutrient.io/guides/windows/
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Alternatively, you can enqueue a rist Of 1pataProvider Objects with the

EnqueueDocumentsFromProviderAsync Mmethod.

Then, you can choose to start querying documents right away or wait until all documents added to the
indexer queue have been completed.

Here’s an example of how to wait and then get the list of indexed documents:

library.WaitForAllIndexingTasksToFinishAsync();

documentUIDs = library.GetIndexedUidsAsync();

Identifying documents

The documents in the list returned by [cetIndexeduidsasync | are represented by a unique ID (UID).
When using storagerile S,thisUIDisa string compromised of a future access token identifying the
folder containing the PDF and the file name of the PDF within that folder. For 1pataprovider S,the

indexed UIDisa string simply containing the 1pataprovider UID.

Due to the unique restrictions of UWP, when using storagerile S, it’s essential that you don'’t clear the
application’s [FutureaccessList |if you wish to retain your libraries, as this is the only place for the future
access token to be recorded.

Moreover, when using pataprovider S, neitherthe streams nor providers themselves are tracked
internally, and they need to be managed by your own application.

You can create a [psPDFKit.Document .DocumentSource) Object for a given document UID using either
DocumentSource.CreateFromStorageFileUidAsync | Ol | DocumentSource.CreateFromDataProvider), both of

which are static methods.

A storageFile object for the file can be accessed by calling cetrile on the created
pocumentSource |Object. Note that the method will throw an exception if the document referred to can
no longer be located.

Here’s an example:

documentUIDs = library.GetIndexedUidsAsync();

https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_GetIndexedUidsAsync
https://docs.microsoft.com/en-us/uwp/api/windows.storage.accesscache.storageitemaccesslist
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Document.DocumentSource.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Document.DocumentSource.html#PSPDFKit_Document_DocumentSource_CreateFromStorageFileUidAsync_System_String_
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Document.DocumentSource.html#PSPDFKit_Document_DocumentSource_CreateFromDataProvider_PSPDFKitFoundation_Data_IDataProvider_
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Document.DocumentSource.html
https://docs.microsoft.com/en-us/uwp/api/windows.storage.accesscache.storageitemaccesslist
https://docs.microsoft.com/en-gb/windows/uwp/index
https://docs.microsoft.com/en-us/uwp/api/windows.storage.accesscache.storageitemaccesslist
https://docs.microsoft.com/en-us/uwp/api/windows.storage.accesscache.storageitemaccesslist

uid documentUIDs)

documentSource = DocumentSource.CreateFromUidAsync (uid) ;

StorageFile file = documentSource.GetFile();

(Exception e)

Both the storageprovider and bpataprovider implementations can be used side by side.
StorageProvider UIDs contain the file name, while pataprovider ones are merely numeric,you're
able to easily check when needed. Note the need to maintain a list of all relevant providers:

(uid.EndsWith())

document DocumentSource.CreateFromStorageFileUidAsync (uid) ;

document DocumentSource.CreateFromDataProvider(providers.Find(provider

1
2
3
4
5
6
7
8

Index and document status

Library) allows you to query for the current indexing state.

You can decide to only query the library if all queued documents have been indexed by using
IsIndexingAsync() . YOu may also check the current status of individual documents by using

GetIndexDocumentStatusAsync()

Querying the library

To query the library, use the [searchasync | method, supplying it with a [Libraryouery | Object.

Here’s an example:

https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_IsIndexingAsync
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_GetIndexDocumentStatusAsync_System_String_
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_SearchAsync_PSPDFKit_Search_LibraryQuery_
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.LibraryQuery.html

The results of the query are sent to a query result handler, which you must provide to the library.

Here's an example:

library.OnSearchComplete += MyOnSearchCompleteMethod;

The [onsearchcomplete | event handler receives a reference to the originating library, along with a
dictionary mapping a document UID to a [nibrarygueryresult) Object. Each result object also contains

the UID as a property and a list of the page indexes where matching results were found.

If you wish to show preview snippets, you should set the [GenerateTextpreviews | property in the query
objectto true .Then, preview text snippets will be delivered to you via the [onsearchpreviewcomplete

event handler.

Here’'s an example:

library.OnSearchPreviewComplete += MyOnSearchPreviewCompleteMethod;

query = LibraryQuery (
{

GenerateTextPreviews =

succeeded = library.SearchAsync(query) ;

The (onsearchpreviewcomplete | event handler receives a reference to the originating library, along with a
list of [LibraryPreviewResult | objects — one for each match. Each of these objects contains a UID
identifying the document, a page index where the matching text is located, a snippet of text surrounding
the match, the range of the matched text within the preview snippet, and the page text. Each object also
has an annotation ID indicating whether or not the match was found in an annotation.

Advanced matching options

Library) Offers advanced matching options. You can set these options in a(Libraryguery |object.

Password-protected documents

https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_SearchAsync_PSPDFKit_Search_LibraryQuery_
https://www.nutrient.io/api/windows/PSPDFKitFoundation/PSPDFKitFoundation.Search.LibraryQueryResult.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.LibraryQuery.html#PSPDFKit_Search_LibraryQuery_GenerateTextPreviews
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_OnSearchPreviewComplete
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_OnSearchPreviewComplete
https://www.nutrient.io/api/windows/PSPDFKitFoundation/PSPDFKitFoundation.Search.LibraryPreviewResult.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.LibraryQuery.html

When indexing documents, it’s possible you might come across a password-protected document.

You can unlock a password-protected document with an event handler, which is fired every time a
password is required. The following example shows how this is possible:

private Library library;

internal async void Initialize(PdfView pdfView)

{

_library = await Library.OpenLibraryAsync("catalog");

_library.OnPasswordRequested += Library OnPasswordRequested;

0 J o L & W N

o

private void Library OnPasswordRequested(Library sender, PasswordRequest passwi

{

[
o

if (passwordRequest.Uid.Contains("Password.pdf"))

{

passwordRequest.Password = "testl23";
break;

passwordRequest.Deferral.Complete();

passwordRequest Will always have the UID populated with the path being indexed (note the full path will
be assigned with the future access token and the file name). Check against this string to determine
which document requires a password and populate the password member of passwordrequest tO
unlock the document. Ensure the [peferral |is completed, as per the last line of

Library OnPasswordRequested ; Otherwise, the index will fail and throw an exception.

Example code

You'll find a complete working code example in the Catalog app provided with the SDK.

Was this helpful?

'-. YES m

https://docs.microsoft.com/en-us/uwp/api/windows.foundation.deferral
https://docs.microsoft.com/en-us/uwp/api/windows.storage.accesscache.storageitemaccesslist

Questions? Contact us

https://www.nutrient.io/company/contact/

