
DOCS CONTACT SALES

UWP

Search

Indexed full-text PDF search in UWP

Nutrient supports fast and efficient full-text search in PDF documents through

PSPDFKit.Search.Library . This document describes how to get started.

To start indexing, create a Library and give it a name. You can then add folders that contain PDF files

to this named library. The Library will index all the PDFs in those folders.

Here’s a simple example of how to create or open a library and start indexing PDFs in a directory:

The documents will now be indexed in the background.

WINDOWS GUIDES SEARCH

Getting started

// Opening a library creates one if it doesn't already exist.
var library = await Library.OpenLibraryAsync("MyLibrary");

// Find a folder containing PDFs.
var folderPicker = new Windows.Storage.Pickers.FolderPicker();
folderPicker.SuggestedStartLocation = Windows.Storage.Pickers.PickerLocationId
folderPicker.FileTypeFilter.Add("*");

Windows.Storage.StorageFolder folder = await folderPicker.PickSingleFolderAsync
if (folder != null)
{
 // Queue up the PDFs in the folder for indexing.
 library.EnqueueDocumentsInFolderAsync(folder);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

ASK AI

SDK Low-Code Workflow DWS API

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html
https://www.nutrient.io/guides/windows/
https://www.nutrient.io/guides/windows/
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Alternatively, you can enqueue a List of IDataProvider objects with the

EnqueueDocumentsFromProviderAsync method.

Then, you can choose to start querying documents right away or wait until all documents added to the

indexer queue have been completed.

Here’s an example of how to wait and then get the list of indexed documents:

The documents in the list returned by GetIndexedUidsAsync are represented by a unique ID (UID).

When using StorageFile s, this UID is a string compromised of a identifying the

folder containing the PDF and the file name of the PDF within that folder. For IDataProvider s, the

indexed UID is a string simply containing the IDataProvider UID.

Due to the unique restrictions of , when using StorageFile s, it’s essential that you don’t clear the

application’s FutureAccessList if you wish to retain your libraries, as this is the only place for the

 to be recorded.

Moreover, when using DataProvider s, neither the streams nor providers themselves are tracked

internally, and they need to be managed by your own application.

You can create a PSPDFKit.Document.DocumentSource object for a given document UID using either

DocumentSource.CreateFromStorageFileUidAsync or DocumentSource.CreateFromDataProvider , both of

which are static methods.

A StorageFile object for the file can be accessed by calling GetFile on the created

DocumentSource object. Note that the method will throw an exception if the document referred to can

no longer be located.

Here’s an example:

// Wait for indexing to finish.
await library.WaitForAllIndexingTasksToFinishAsync();

// Get the list of indexed documents.
var documentUIDs = await library.GetIndexedUidsAsync();

1
2
3
4
5

Identifying documents

future access token

UWP

future

access token

// Get the list of indexed documents.
var documentUIDs = await library.GetIndexedUidsAsync();

1
2
3

https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_GetIndexedUidsAsync
https://docs.microsoft.com/en-us/uwp/api/windows.storage.accesscache.storageitemaccesslist
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Document.DocumentSource.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Document.DocumentSource.html#PSPDFKit_Document_DocumentSource_CreateFromStorageFileUidAsync_System_String_
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Document.DocumentSource.html#PSPDFKit_Document_DocumentSource_CreateFromDataProvider_PSPDFKitFoundation_Data_IDataProvider_
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Document.DocumentSource.html
https://docs.microsoft.com/en-us/uwp/api/windows.storage.accesscache.storageitemaccesslist
https://docs.microsoft.com/en-gb/windows/uwp/index
https://docs.microsoft.com/en-us/uwp/api/windows.storage.accesscache.storageitemaccesslist
https://docs.microsoft.com/en-us/uwp/api/windows.storage.accesscache.storageitemaccesslist

Both the StorageProvider and DataProvider implementations can be used side by side.

StorageProvider UIDs contain the file name, while DataProvider ones are merely numeric, you’re

able to easily check when needed. Note the need to maintain a list of all relevant providers:

Library allows you to query for the current indexing state.

You can decide to only query the library if all queued documents have been indexed by using

IsIndexingAsync() . You may also check the current status of individual documents by using

GetIndexDocumentStatusAsync() .

To query the library, use the SearchAsync method, supplying it with a LibraryQuery object.

Here’s an example:

foreach (var uid in documentUIDs)
{
 try
 {
 var documentSource = await DocumentSource.CreateFromUidAsync(uid);
 StorageFile file = documentSource.GetFile();
 }
 catch (Exception e)
 {
 // Examine the exception.
 }
}

4
5
6
7
8
9

10
11
12
13
14
15

if (uid.EndsWith(".pdf"))
{
 document = await DocumentSource.CreateFromStorageFileUidAsync(uid);
}
else
{
 document = DocumentSource.CreateFromDataProvider(_providers.Find(provider =
}

1
2
3
4
5
6
7
8

Index and document status

Querying the library

https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_IsIndexingAsync
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_GetIndexDocumentStatusAsync_System_String_
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_SearchAsync_PSPDFKit_Search_LibraryQuery_
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.LibraryQuery.html

The results of the query are sent to a query result handler, which you must provide to the library.

Here’s an example:

The OnSearchComplete event handler receives a reference to the originating library, along with a

dictionary mapping a document UID to a LibraryQueryResult object. Each result object also contains

the UID as a property and a list of the page indexes where matching results were found.

If you wish to show preview snippets, you should set the GenerateTextPreviews property in the query

object to true . Then, preview text snippets will be delivered to you via the OnSearchPreviewComplete

event handler.

Here’s an example:

The OnSearchPreviewComplete event handler receives a reference to the originating library, along with a

list of LibraryPreviewResult objects — one for each match. Each of these objects contains a UID

identifying the document, a page index where the matching text is located, a snippet of text surrounding

the match, the range of the matched text within the preview snippet, and the page text. Each object also

has an annotation ID indicating whether or not the match was found in an annotation.

Library offers advanced matching options. You can set these options in a LibraryQuery object.

// Search all documents in the library for the text "Acme."1

library.OnSearchComplete += MyOnSearchCompleteMethod;

library.OnSearchPreviewComplete += MyOnSearchPreviewCompleteMethod;

var query = new LibraryQuery("Acme")
{
 GenerateTextPreviews = true
}
var succeeded = await library.SearchAsync(query);

1
2
3
4
5
6
7

Advanced matching options

Password-protected documents

https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_SearchAsync_PSPDFKit_Search_LibraryQuery_
https://www.nutrient.io/api/windows/PSPDFKitFoundation/PSPDFKitFoundation.Search.LibraryQueryResult.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.LibraryQuery.html#PSPDFKit_Search_LibraryQuery_GenerateTextPreviews
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_OnSearchPreviewComplete
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#PSPDFKit_Search_Library_OnSearchPreviewComplete
https://www.nutrient.io/api/windows/PSPDFKitFoundation/PSPDFKitFoundation.Search.LibraryPreviewResult.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.LibraryQuery.html

When indexing documents, it’s possible you might come across a password-protected document.

You can unlock a password-protected document with an event handler, which is fired every time a

password is required. The following example shows how this is possible:

PasswordRequest will always have the UID populated with the path being indexed (note the full path will

be assigned with the and the file name). Check against this string to determine

which document requires a password and populate the Password member of PasswordRequest to

unlock the document. Ensure the Deferral is completed, as per the last line of

Library_OnPasswordRequested ; otherwise, the index will fail and throw an exception.

You’ll find a complete working code example in the Catalog app provided with the SDK.

Was this helpful?

private Library _library;

internal async void Initialize(PdfView pdfView)
{
 _library = await Library.OpenLibraryAsync("catalog");
 _library.OnPasswordRequested += Library_OnPasswordRequested;
}

private void Library_OnPasswordRequested(Library sender, PasswordRequest passwo
{
 if (passwordRequest.Uid.Contains("Password.pdf"))
 {
 passwordRequest.Password = "test123";
 break;
 }

 passwordRequest.Deferral.Complete();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

future access token

Example code

YES NO

https://docs.microsoft.com/en-us/uwp/api/windows.foundation.deferral
https://docs.microsoft.com/en-us/uwp/api/windows.storage.accesscache.storageitemaccesslist

Questions? Contact us

https://www.nutrient.io/company/contact/

