
DOCS CONTACT SALES

UWP

Events and notifications

Events and notifications

Nutrient UWP SDK exposes specific events for applications to consume. These events are mainly

related to user actions. They’re raised after key UI interactions and data manipulation, which allows

users more control over their PdfView s.

After a PdfView is instantiated, subscribing to events is straightforward, as one would expect in C#:

In addition to their specific arguments, events also include the sender object in their event handlers.

Events are found in four major classes:

WINDOWS GUIDES

PDFView.InitializationCompletedHandler += PDFViewOnInitializationCompletedHandler

private void PDFViewOnInitializationCompletedHandler(PdfView sender, Document a
{

// ...
}

1
2
3
4

Structure

Controller

PdfView

Document

ASK AI

SDK Low-Code Workflow DWS API

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/windows/
https://www.nutrient.io/guides/windows/
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.UI.Controller.html#events
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.UI.PdfView.html#events
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Pdf.Document.html#events
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

The primary source for events is the Controller class, which should be where you look first. A number

of events related to the view and its state are also found in the PdfView class — most notably, the

InitializationCompletedHandler event shown above.

Events related to bookmarks and annotations that aren’t necessarily tied to the UI are part of the

Document class, while search events are found in the Library class. More details about Nutrient UWP

SDK’s capabilities for indexed search can be found .

Finally, custom ToolbarItems expose their own press events. You can read more about customizing

the toolbar .

For working code samples, the Catalog example app has a section for events. Moreover, a detailed view

of each event can be found in the documentation for its respective parent class.

 have several events associated with them, mainly regarding user interaction, with the

IAnnotation object interacted with being passed through in the event arguments. Considering

annotations have unique IDs, and given your application subscribes to the relevant events, managing

them and adapting interactions to specific use cases is simple.

The following annotation and annotation-related events are included in Nutrient UWP SDK:

The OnAnnotationPressed event has been exposed in the Controller class, and it handles user

presses, including information about the pointer used:

Library

here

here

Annotations

Annotations

AnnotationsCreated

AnnotationsDeleted

AnnotationsUpdated

OnAnnotationPresetUpdate

OnAnnotationSelectionChanged

OnAnnotationPressed

IsEditableAnnotation

OnAnnotationsWillChange

https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Pdf.Annotation.IAnnotation.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.UI.Controller.html#PSPDFKit_UI_Controller_OnAnnotationPressed
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Search.Library.html#events
https://www.nutrient.io/guides/windows/features/indexed-full-text-search/
https://www.nutrient.io/guides/windows/customizing-the-interface/customizing-the-toolbar/
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Pdf.Annotation.html
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Pdf.Document.html#PSPDFKit_Pdf_Document_AnnotationsCreated
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Pdf.Document.html#PSPDFKit_Pdf_Document_AnnotationsDeleted
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Pdf.Document.html#PSPDFKit_Pdf_Document_AnnotationsUpdated
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.UI.Controller.html#PSPDFKit_UI_Controller_OnAnnotationPresetUpdate
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.UI.Controller.html#PSPDFKit_UI_Controller_OnAnnotationSelectionChanged
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.UI.Controller.html#PSPDFKit_UI_Controller_OnAnnotationPressed
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.UI.Controller.html#PSPDFKit_UI_Controller_IsEditableAnnotation
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.UI.Controller.html#PSPDFKit_UI_Controller_OnAnnotationsWillChange

Preventing the default behavior of an annotation is also possible through the same event. Note that this

isn’t supported inside async event handlers:

Detecting when annotations will change can be done with the aptly named OnAnnotationsWillChange

event, which is also found in the Controller . Before user actions cause annotation changes, this event

is invoked, and it states the and lists the affected annotations:

A more in-depth introduction to annotations and their uses can be found .

{
PDFView.Controller.OnAnnotationPressed += OnAnnotationPressed;

}

private void OnAnnotationPressed(Controller controller, AnnotationPressedEventA
{
 if (args.Pointer.IsPrimary)
 {
 Debug.Write(args.Annotation.AnnotationType);

}

1
2
3
4
5
6
7
8
9

10

private void OnAnnotationPressed(Controller controller, AnnotationPressedEventA
{
 if (args.Annotation.AnnotationType == AnnotationType.Ink)
 {
 args.PreventDefault = true;
 }
}

1
2
3
4
5
6
7

reason

{
PDFView.Controller.OnAnnotationsWillChange += OnAnnotationsWillChange;

}

private void OnAnnotationsWillChange(Controller controller, AnnotationsChanging
{
 if (args.Reason == AnnotationsWillChangeReason.DrawStart)
 {
 for (var i = 0; i < annotationsChanging.Annotations.Count; i++)
 {
 Debug.Write(annotationsChanging.Annotations[i].Id)
 }
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

here

https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.UI.Controller.html#PSPDFKit_UI_Controller_OnAnnotationsWillChange
https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.UI.AnnotationsWillChangeReason.html
https://www.nutrient.io/guides/windows/annotations/introduction-to-annotations/

Reacting to bookmark actions can be done through the BookmarksCreated , BookmarksDeleted , and

BookmarksUpdated events found in the Document class. These can be used to add custom logic and

manually manage bookmarks:

Additional examples can be found on the events page of the Catalog, and presents an

overview of bookmarks.

The OnPagePressed event found in the Controller class both informs page-press coordinates and

holds information about the pointer used. This allows for better multi-pointer support and specific

behavior depending on, for example, the pointer type:

Another useful event regarding user interaction is OnTextSelectionChanged . More information about it

can be found .

The full-text search library exposes a few different events, which gives your application a lot of control

over the process:

Bookmarks

document.BookmarksCreated += (view, bookmarks) =>
{
 foreach (var bookmark in bookmarks)
 {
 _bookmarks[bookmark.Id] = bookmark;
 }
};

1
2
3
4
5
6
7

this page

User interaction

pdfView.Controller.OnPagePressed += (sender, args) =>
{
 if (args.PageIndex == 3 && args.Pointer.PointerId == 1)
 {
 // ...
 }
};

1
2
3
4
5
6
7

here

Indexed full-text search

https://www.nutrient.io/guides/windows/bookmarks/
https://www.nutrient.io/guides/windows/features/text-selection/

Examples of these events are detailed on the Full-Text-Search page of the Catalog project and in the

 guide.

Was this helpful?

Questions?

OnFinishedIndexingDocument

OnPageIndexed

OnPasswordRequested

OnSearchComplete

OnSearchPreviewComplete

OnSearchTimedOut

OnStartIndexingDocument

indexed full-text search

YES NO

Contact us

https://www.nutrient.io/guides/windows/features/indexed-full-text-search/
https://www.nutrient.io/company/contact/

