» SDK Low-Code Workflow DV

o o
AP Docs contacT sates il |
()

UWP

Digital signatures

WINDOWS = GUIDES = SIGNATURES = DIGITAL SIGNATURES

Add digital signatures to PDFs in Windows

Nutrient enables signing both existing signature form elements and documents without a signature
form element. If there is no signature form field in the current document, Nutrient gives you the byte
range and a hash representation of the current state of the document, so you can digitally sign it by
obtaining a DER PKCS#7 container from either the byte range or the hash and then applying that DER
PKCS#7 container to a new, ad hoc invisible signature form field.

You're only responsible for providing the signing service that will receive the byte range and the hash as
input values and return the DER PKCS#7 container to be applied to the prepared signature form field.
Our implementation allows you to produce, validate, and display digitally signed documents in a totally

flexible way.

If you want to use the Digital Signatures component, make sure it’s included in your license. Contact

Sales for more information.

Approval and certification signatures

PDF documents mainly support two types of digital signatures: approval signatures, and certification
signatures. Approval signatures are used to indicate that a signer agrees with or acknowledges the
contents of a document. A single document can contain multiple approval signatures. Meanwhile,
certification signatures restrict the kind of changes that can be applied to a document once it’s signed.

A PDF document only allows one certification signature. Nutrient provides support for apprq

signatures. For certification signatures, contact Support.

https://www.nutrient.io/contact-sales?=sdk
https://www.nutrient.io/guides/windows/
https://www.nutrient.io/guides/windows/
https://www.ietf.org/rfc/rfc2315.html
https://www.nutrient.io/contact-sales/
https://www.nutrient.io/contact-sales/
https://www.nutrient.io/support/request
https://www.nutrient.io/sdk/developers
https://www.nutrient.io/low-code/help-center
https://www.nutrient.io/workflow-automation/help-center
https://www.nutrient.io/api/documentation/

Creating a digital signature

Adding a digital signature on a PDF document is both reliable proof of the document’s origin and
protection against modification by third parties.

To create a digital signature, you need two things.

First, you need an X.509 certificate that contains your public key and your signer information.
Nutrient supports PEM-encoded X.509 certificates, as well as PEM-encoded PKCS#7

certificates. You can verify if a PKCS#7 certificate file is correctly PEM-encoded by using the

OpenSSL command-line tool as follows:

openssl pkcs7 -noout -text -print certs -in example.p7b

The above command will print an error message if “example.p7b” is not a PEM-encoded PKCS#7
certificate or certificate chain.

To verify if a PKCS#7 certificate file is correctly DER encoded, you can use this command instead:

openssl pkcs7 -inform der -noout -text -print certs -in example.p7b

The above command will print an error message if “example.p7b” is not a DER-encoded PKCS#7

certificate or certificate chain.

Second, you need your private key. A self-signed private key and certificate pair can be created

with the command shown in the previous section.

Single-step or two-step signing

With Nutrient UWP SDK, there are two strategies for digitally signing documents. You can provide the
certificate and private key in PEM formats and sign the document in a single step. Alternatively, there’s a
two-step process where you can register an event handler that gets called by the framework to retrieve
the signature. In that handler, you can generate the signature yourself and provide that to Nutrient UWP
SDK. The two-step process can be useful for workflows where you may wish to perform the signing with
specialized hardware devices or sign remotely, etc. It also has the benefit of ensuring that Nutrient
doesn’'t need access to the private key that ultimately will be used to produce the signature value,
leaving you complete freedom to choose which strategy to use to manage its lifecycle and security.

How it works

Under the hood, the process of signing a document is divided into three phases:

1 Nutrient prepares the document for a signature, adding an invisible form field that will contain

the signature value.

2 Nutrient then either generates the signature in a PKCS#7 container internally or fires the two-

step signature signing event handler for you to generate the signature.

3 Nutrient applies the signature and saves the document.

If the signing process is successful, the document is reloaded with the new invisible digital signature
added to it.

During the call to [bocument.signandsaveasync), and until either the DER PKCS#7 container is generated
and Nutrient applies the signature to the document or the process is disregarded due to a rejection
from the callback, all Ul interactions from the user are disabled. This ensures that no modifications are

made to the document while a new digital signature is about to be added to it.

Single-step signing example

certificate = GetTestAssetTextAsync (
privateKey = GetTestAssetTextAsync (

doc = Document .OpenDocumentAsync (source) ;

doc.SignAndSaveAsync (HashAlgorithm.Sha256, certificate, privateKey,
{

1
2
3
4
5
6
7
8
)

=
o

SignerName =
SignatureReason =

[
N

Signaturelocation =

[
w

)

Two-step signing example

certificate = GetTestAssetTextAsync (

privateKey = GetTestAssetTextAsync (

https://www.nutrient.io/api/windows/PSPDFKit/PSPDFKit.Pdf.Document.html#PSPDFKit_Pdf_Document_SignAndSaveAsync_PSPDFKitFoundation_DigitalSignatures_HashAlgorithm_System_String_System_String_PSPDFKit_DigitalSignatures_SignatureMetadata_
https://www.ietf.org/rfc/rfc2315.html

var doc = Document .OpenDocumentAsync (source) ;

// Register the two-step signature signer event handler.

doc.TwoStepSignatureSigning += (deferral, signingData)

{

b F

var certificate = GetCertificate();
var privateKey = GetPrivateKey();

// Hash the PDF data. SHA256 or greater 1is recommended.
byte[] hash;
(var sha256 = SHA256CryptoServiceProvider())

hash = sha256.ComputeHash(signingData.FileContents.AsStreamForRead());

// You can compare your own hash with a hash generated by Nutrient from th
(CryptographicBuffer.EncodeToHexString(hash.AsBuffer()).ToUpperInvarian

Exception(

// Sign the hash.
// For this example, we use a utility method provided by Nutrient, but
// 1f you need to ensure that Nutrient doesn’t have access to the priv
var signature = Utilities.GeneratePKCS7ContainerAsync (
hash.AsBuffer(),
certificate,
privateKey,
HashAlgorithm.Sha256);

signingData.Pkcs7Container = signature;

// It is essential to complete the deferral.

// Read more about "Deferral s in this blog post:
// /blog/async-callbacks-with-deferral-csharp/
deferral.Complete();

// Sign the document. SHA256 or greater is recommended.

// No need to provide a certificate or private key.
doc.SignAndSaveAsync (HashAlgorithm.Sha256, SignatureMetadata

{

SignerName =
SignatureReason =
SignatureLocation

})i

Was this helpful?

.'. Y ES m

Questions? Contact us

https://www.nutrient.io/company/contact/

